






Computational Imaging (2022) • Edited version of this material will be published by the MIT Press



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

ii

Manuscript with Exercises

Computational Imaging
Digital Copy of First Edition - Accepted for Printing by MIT Press

Ayush Bhandari
Imperial College

London

Achuta Kadambi
University of California

Los Angeles

Ramesh Raskar
Massachusetts Institute

of Technology

The MIT Press
Cambridge, Massachusetts

London, England



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

Preface

The motivation for writing this primer book on Computational Imaging was to have an
initial reference for the field. By laying down a foundation, the instructors aim to provide
students with a textbook that aligns with the title of courses they teach on “computational
imaging”. For established practitioners, we hope to provide a reference text that aligns
with emerging journals and societies in engineering organizations as diverse as the IEEE,
ACM, OSA, and SPIE. For instance, the IEEE Transactions of Computational Imaging was
formally indexed in October, 2018.

The timing of this book also coincides with an increase in the hiring of faculty who identify
computational imaging as their core competency. Just a decade ago, only a few EE/CS
departments had researchers who explicitly identified as computational imaging faculty
(e.g. as in the case of book author R.R.). It may not have made sense to have a unified
textbook for so few professors and classes. Today, nearly every top-tier university has at
least one faculty member who identifies computational imaging as their core expertise.
Many of these faculty are junior faculty (e.g. the case of book authors A.B and A.K.) who
have been tasked by their departments to create new courses on “Computational Imaging”.
We hope this textbook and associated set of homework assignments provides is not just
handy for students and practitioners, but also to professors who are now teaching courses
on computational imaging.

The push for increased hiring of computational imaging faculty is not a coincidence - the
push parallels advances in computer vision, machine learning, and signal processing tools.
These tools, now more powerful than ever, can enable imaging systems to see the invisible:
cameras that operate at a trillion frames per second, microscopes that can see small viruses
long thought to be optically irresolvable and, recently, telescopes that can even image black
holes. Closer to home, self-driving cars and smartphone cameras are powered in part by
computational imaging techniques, impacting our everyday life.
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Scope for the Book
This book lays the foundations of computational imaging, a convergence of vision, graphics,
signal processing, and optics. We may interest practitioners in any of these four fields;
however, this is not a fundamental text for any of the four fields, nor is it intended to be as
there are many excellent books that exist. Recommendations for computer vision include
Forsyth and Ponce (2012); Szeliski (2011); Hartley and Zisserman (2004); for graphics it
could be Gortler (2012); Marschner and Shirley (2018); Hughes et al. (2013); for signal
processing, (foundations,Mallat (2009);Vetterli et al. (2014)), sparse signal processingElad
(2010)); numerical methods Björck (1996); Strang (2016); convex optimization Boyd and
Vandenberghe (2004). For optics and photonics, we recommend Hecht (2012); Goodman
(2005), and Saleh and Teich (1991), respectively which all offer a vastly different treatise
of optics. In contrast to these foundational books, our book discusses modern ideas that
have captivated the field over the past decade: imaging of black holes, at trillion FPS, light
transport, seeing around corners, etc. These breakthroughs—seemingly feats of physics—
were led by computer scientists in key roles.

Acknowledgments
Writing a book on an exciting and emerging topic is a massive undertaking and this
would not have been possible without the help and support of our friends, collaborators,
colleagues and the members of interdisciplinary communities. The authors gratefully
thank these individuals for their feedback and comments on the earlier versions of the
draft. In particular, we would like to thank Gordon Wetzstein for actionable comments on
improving aspects of the book, particularly sections pertaining to light fields. Vishwanath
Saragadam provided feedback on sections pertaining to multispectral and hyperspectral
imaging. Kenichiro Tanaka and Teppei Kurita provided input on the polarization section.
Bahram Jalali and Aydogan Ozcan have had numerous discussions with the authors at the
seamline of AI and physics. Nick Antipa took the time to provide input on lensless imaging
design. Discussions with Suren Jaysuriya date back several years and are interspersed in
many aspects of the book.

On the typographical front, the authors also thank Kyle Icban (an Editorial Cartoonist at
the DailyBruin) who contributed to some of the figures in the book and Amol Mahurkar
for his help with LATEXtypesetting.

AB acknowledges Dorian Florescu for his help with review and preparation of materials,
in particular, for the imaging toolkit, spatially coded imaging as well as light field imaging.
Logistic support from Dorian Florescu and Humera Humeed was invaluable in maintaining
tight timelines.

AK acknowledges the participants of the inaugural Computational Imaging class (ECE239)
at UCLA. Questions, insights, and corrections raised by our students in lecture and office
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Rajeshwari Jadhav, and Shreeram Athreya contributed to various aspects of light trans-
port. Through many discussions, Siddharth and Chinmay contributed to the design and
organization of the materials in the book.

RR thanks themembers of the Camera Culture Groupwho, over the course of a decade, have
not only contributed to the growing wealth of results in the area of computational imaging
but also enabled this book by development of early coursework at MIT. Beyond MIT,
RR acknowledges the collaboration with Jack Tumblin that resulted in the computational
photography book (2007) which served as an early primer to the subject.

Many of the illustrations in this book are results developed by leading scientific groups
around the world. We gratefully acknowledge our colleagues who, in the spirit of Open
Science, have generously allowed us to use their original illustrations from their research—
Amine Bermak, Aydogan Ozcan, Bahram Jalali, Diego Gutierrez, Dilip Krishnan, Ethan
Schonbrun, Felix Heide, Fredo Durand, Georg Petschnigg, George Barbastathis, Gor-
don Wetzstein, Ioannis Gkioulekas, Jun Tanida, Kyros Kutulakos, Lei Tian, Marc Levoy,
Masatoshi Okutomi, Matt O’Toole, Matthew Tancik, Michal Irani, Paul Debevec, Paul Hae-
berli, Philip Dutre, Qionghai Dai, Raanan Fattal, Rajeev Ramanath, Rajiv Laroia, Richard
Baraniuk, Ross Girshick, Shree Nayar, Stanley Pau, Vasilis Ntziachristos, Vivek Goyal and
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6.28 Viewing Zone Size for Two-Stacked Displays. The display is at a fixed distance (d = 125 cm)
from the viewer, who has an interpupillary distance (IPD) set to 6.4 cm (left). The viewing
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8.1 What is wavelength, and how do we use it in imaging? (a) Electromagnetic (EM) waves
are characterized by a wavelength. (b) Electromagnetic spectrum. (c) A standard camera,
similar to our eyes, captures visible light that reflects off a scene, from which we extract
photographs. However, images at different wavelengths capture different information about
a scene. For example, a thermal image would be useful for heat-seeking, while an infrared
image would be useful for food analysis. (d) A spectral image samples scenes at a higher
spectral frequency than normal RGB images. 284

8.2 Why is the sky blue? The interaction of the broadband beam coming from the sun with
particles in the atmosphere is highly wavelength dependent. Blue light’s shorter wavelength
causes it to undergo Rayleigh scattering in the atmosphere, which enables our perception
of a blue sky. 286

8.3 Interaction between Light and Matter. (a) When light interacts with an object, it will reflect off
of it, be absorbed by it, scatter through it, transmit through it, or do a combination of these.
(b) Examining the interaction of light with an apple is a powerful, non-destructive method of
analyzing the fruit’s freshness. These interactions tend to be wavelength-dependent, which
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8.4 Multispectral versus Hyperspectral Imaging. 288
8.5 Seeing through walls with Wi-Fi. An interesting application of spectral imaging is in the

use of non-traditional frequencies with Wi-Fi imaging (2.4 GHz) to image through walls.
(a) Setup of Wi-Vi imaging module Adib and Katabi (2013) and (b) Wi-Vi image capturing
different poses through a wall [ref]. 288

8.6 (a) Retinal Sensitivity to Color. Our eyes have three types of cone cells: L-cones, M-cones,
and S-cones. Each cone is optimized to sense light at different wavelengths. The spectral
absorption of each cone is shown on the right. (b) Illumination Illusions. Our brain adapts
to different illumination conditions to render a scene with spatial and color consistency. (c)
Retinal vs. Perceived Color. Even with a blue overlay, our visual system is still able to
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8.7 Capturing a spectral image. A multispectral image can be captured either by (a) passive
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8.12 Multiplexed Illumination. Methodically illuminating the scene with more than one spectral
source at a time can enable efficient data capture and higher reconstruction accuracies.
An example of the top 3 optimal illumination patterns are shown with two allowed
measurements. 297

8.13 Dark Flash Photography. Capturing non-intrusive, high-quality images can be challenging
in dimly lit environments. One way to get around this hurdle is by actively illuminating the
scene with an infrared light source. We can then leverage the spectral proximity of red with
infrared wavelengths to constrain the image reconstruction problem Krishnan and Fergus
(2009). 299

8.14 Principal Component Analysis (PCA). PCA seeks to represent data in a coordinate system
as to maximize the variance of the data’s projection onto each axis. Observe that by
minimizing the least squares error of the projection, the axis also maximizes the variance of
the projections. 303

8.15 Statistical Representation of Spectral Images. (a) PCA representation of patches in a
hyperspectral image. (b) Log scale of variance of first 200 PCs. 304

8.16 Image Demosaicing using (a) color difference interpolation, (b) residual interpolation, and
(c) adaptive residual interpolation. 305

9.1 Lambert’s Law and Foreshortening. When the incident light is at an angle with respect
to the normal, the area of light incident on the surface is reduced, in what is known as
foreshortening. This results in a reflected intensity proportional to the product of cos θi and
the incident intensity. 315

9.2 Specular or Mirror-like Reflection of Light. 317
9.3 Phong BRDF Model for Specular Highlights. 317
9.4 Geometry of Image Projection. (a) Perspective Projection. (b) Orthographic

Projection. 317
9.5 Example of a Reflectance Map. 318
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9.7 Photometric Stereo for Lambertian Surfaces. (a) Light from the illumination source is

incident on the object, with the source vector s known for each pixel. The light reflected
to the sensor is approximately independent of the sensor location, due to the Lambertian
approximation. (b) Multiple light spatially offset light sources are used in photometric stereo,
with a fixed camera position. 320

9.8 Important Photometric Angles: Incident Angle (i), View Angle (e), Phase Angle (g). 321
9.9 Scene Interreflections. The most idealized model is the single bounce model, in which

light from the source bounces off the surface and directly reaches the sensor. However,
the light can bounce off of the surface n times, as shown for two-bounce reflection and
a three-bounce reflection. The total intensity measured at the sensor is the sum of the
intensities for all possible number of bounces, from 1 to infinity Seitz et al. (2005). 327

9.10 Concave Shape Reconstruction Using Photometric Stereo. (a) Original shape. (b) Shape
reconstructed with standard photometric stereo Nayar et al. (1991). 327

9.11 Direct and Indirect Illumination of Surface Points. 328
9.12 Iterative Algorithm For Extracting Shape from Objects With Interreflections Nayar et al.

(1991). 330
9.13 (a) Standard Photometric Stereo (b) Multiplexed Illumination Schechner et al. (2007). 333
9.14 Light Stage. (a) Light Stage With a Movable Arm Masselus et al. (2002). (b) Light Stage

Based on Several Spatially Offset Light Sources Hawkins et al. (2001). 334
9.15 The coordinate system is defined such that a hemisphere completely contains the object of

interest Masselus et al. (2003). 335
9.16 Relighting Based on discretized 4D Light Fields Masselus et al. (2003). 336
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9.1 By observing an object under different lighting conditions, we can extract the surface
normals of the object, which are used as a proxy for local shape. 339

9.2 Insert an image of your optical setup (replace our example). 340
9.3 Insert an object image and its corresponding specular sphere image (replace our

example). 347
9.4 Insert your segmented specular sphere image (replace our example). 348
9.5 Label the point of specularity on your sphere image (replace our example). 348
9.6 Insert the normal map of the original object (replace our example). 349
9.7 Insert the reconstructed shading image and the error statistics (replace our example). 350
9.8 Insert the normal map and reconstructed shading image obtained with unknown lighting

conditions (replace our example). 351
10.1 Dual Photography leverages the light transport matrix and Helmholtz reciprocity to swap

camera and projector viewpoints. (a) The setup, with the projector viewing the card’s face
and the camera viewing its back. (b) Live photo of the setup. (c) The produced image using
dual photography Sen et al. (2005). 356

10.2 Example of Dual Photography (a) The primal image. Lighting is from the perspective of the
projector, and the photo has a resolution equal to that of the camera. (b) The dual image.
Lighting is from the perspective of the camera, and the photo has a resolution equal to that
of the projector Sen et al. (2005). 357

10.3 Primal and Dual Image Matrices. The left diagram illustrates the primal setup where
light is emitted from the camera and captured by the projector. Helmholtz reciprocity, a
consequence of conservation of energy, suggests that we can reverse this operation. For
example, assume a ray from a projector pixel strikes the scene and is captured by a set of
camera pixels. If those camera pixels were instead virtual projector pixels, the same amount
of light would hit the scene and reach that single projector pixel (now virtual camera). As
illustrated in the right diagram, we can mathematically swap the location of the projector
and the camera, in order to find out what virtual camera would be capturing if it was in the
projector’s place Sen et al. (2005). 358

10.4 Separation of Global and Direct for a Complex Scene. (a) This is the original image of a
scene with many optically complex objects. (b) This is the decomposed direct illumination
image. It has been scaled up by a factor of 1.25. (c) This is the global illumination image
which includes diffuse and specular interreflections (wall wedge and nut), volumetric
scattering (milky water), subsurface scattering (marble), translucency (frosted glass), and
shadow (fruit on board) Nayar et al. (2006). 360

10.5 Direct-Global Decomposition of Concave and Convex Surfaces. Concave surfaces are
curved inwards, while convex structures are curved outwards. 361

10.6 Failed Direct Global Decomposition. Failed separation due to the violation of the smooth
global function assumption, when the checkerboard pattern is shifted. The highly
specular reflections cause residual checkerboard patterns in each component Nayar et al.
(2006). 364

10.7 Operations using Probing Matrix. (a) The light transport matrix can be rewritten as being
multiplied element-wise by the probing matrix. This offers a greater degree of freedom in
the light transport matrix. (b) This table outlines some potential probing matrix operations
we can do without knowing the full light transport matrix O’Toole et al. (2012). 368

10.8 Optical Probing Pipeline. This diagram contains the full pipeline, with relation to the optical
hardware, of the probing procedure O’Toole et al. (2012). 369

10.9 Optical Probing Algorithms. This table contains the two main algorithms used in the optical
probing procedure: path isolation and optical matrix probing O’Toole et al. (2012). 370
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10.10 Light Transport Matrix of a Scene. (a) An image of the scene, containing various objects
that have complex optical interactions. (b) This is a slice of the light transport matrix for the
single highlighted row in part (a). A point (n,m) in the image, represents the light paths
that were emitted by pixel m of the projected and captured by pixel n of the camera (in the
highlighted row). The diagonality of the slice implies that light was transported between
projector and camera pixels that were close to each other. (c-f) These are various notable
aberrations in the light transport matrix slice, and their causes O’Toole et al. (2012). 371

10.11 Stereo Transport Matrix using Epipolar Imaging. This is a diagram of the Stereo Light
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1 Introduction to Computational Imaging

1.1 What is Computational Imaging

Imagine if it was possible to photograph a black hole or create cameras that can image
around corners. What if we can invent a camera that can freeze light in motion, or create
new forms of light sensing that enable autonomous cars to “see” in fog?

These capabilities sound like fanciful superpowers—and they would be for the everyday
cameras that we are used to. However, the field of computational imaging seeks to transform
the camera into something more; something that can achieve superpowered feats. The
solution? To jointly design optics and computation to overcome long standing limits of
imaging.

Computational Imaging: Joint design of optical capture and computational algo-
rithms to create novel systems.

In contrast to traditional imaging, computational imaging is distinguished by a heavy use
of mathematical algorithms. For example, where an X-ray photograph is a conventional
imaging system, the blending of multiple X-ray photographs to compute a 3D tomography
model (“CAT scan”) would be a computational imaging system. Another example consists
of sharpening motion-blurred images. Traditionally, this is done purely through deconvo-
lution software. The computational imaging alternative is “coded exposure imaging” as is
shown in Fig. 1.1.

A principled co-design of hardware and algorithms leads to overcoming some of the main
limitations of traditional imaging. These include,

Dynamic Range All digital sensors, including imaging sensors, are limited in their dy-
namic range. Physical entities such as intensity or photon flux beyond a predefined
threshold can cause sensor saturation, which would result in a permanent loss of infor-
mation.
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Figure 1.1: Motion deblurring. A comparison of traditional approach with computational
imaging approach. Longer exposure period results in motion blurring because the object
moves during the exposure. In this case, one can either resort to a hardware based solution
that entails a short exposure period. The disadvantage here is that the resulting image is
noisy. Alternatively, one can use a computational approach that entails “deconvolution”
and is inexact. The computational imaging alternative is based on coded exposure imaging.
By coding the camera’s shutter pattern, the resulting image can be recovered using an
algorithm that results in superior performance.

Spatial resolution The resolution of a traditional camera is strictly determined by its sensor
size. A classic example is the sensor resolution of consumer-grade three dimensional
imaging sensors such as the Microsoft Kinect. Whereas consumer cameras offer spatial
resolution on the order of tens of megapixels, this is not the case with three dimensional
imaging sensors.

Depth of field Due to their inbuilt features, traditional imaging systems are subject to a
number of trade-offs between the depth of field, field of view, and imaging parameters.
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Computational imaging devices generate far more than an array of pixel values, amounting
to additional scene information that may include data such as depth or spectral information
of the scene. From a mathematical perspective, computational imaging systems capture a
far larger class of signals or information that can be leveraged using advanced algorithms.
For instance, apart from simply associating a red, green, and blue (RGB) component with
every pixel, such systems are capable of measuring the 3D structure of the scene, shape
boundaries, and perform decompositions such as foreground and background objects, direct
and indirect illumination, and layers of transmission and reflection.

Apart from this, we may want to have more subtle contributions to the imaging process
by highlighting small features that are not observable by the human eye. In order for
a photograph to be photometrically accurate, meaning that it takes into account human
perception, it is possible to use small pictorial elements that can be achievedwith customized
lighting or viewpoint adjustment.

Contributions to computational imaging have come from a diverse set of communities
including signal processing, optics, computer vision, computer graphics, and applied math-
ematics. Computational imaging is not only a shared interest among these diverse commu-
nities, but a necessity to address scientific applications du jour.

1.2 Historical roots of Computational Imaging

Ideas of combining imaging with computation date back to the beginning of the computing
revolution. In the 1960’s astronomers were interested in measuring X-ray radiation emitted
from various astronomical objects such as the sun, neutron stars, and black holes. Tradi-
tionally, astronomical objects were viewed through a telescope, which used glass lenses to
bend optical radiation. Unfortunately, X-ray astroimaging introduced a unique challenge:
X-rays do not bend through glass.

To overcome this problem, scientists recognized the importance of using “straight-line”
imaging techniques to photograph X-ray point sources. A “straight-line” imaging technique
does not require the controlled bending of light rays to form an image. An early example
is the “pinhole camera”. With origins in ancient Greek and Chinese civilizations, the
pinhole camera enabled image formation using a light-blocking mask with a small hole.
An example would be a room with all the windows shuttered, apart from a small hole,
illustrated in Fig. 1.2. This everyday example was so remarkable that the word “camera”
originates from the Latin word for “room”. For the X-ray imaging problem, pinhole camera
techniques could indeed be used to form an image. A mask that blocks X-ray radiation can
be fashioned out of an attenuating media, and a hole can be punched through the lead mask.
The pinhole camera does not need to bend light to form an image. A pinhole seems like a
terrific solution to the X-ray imaging problem!
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Unfortunately, the pinhole camera does not solve the X-ray imaging problem. A pinhole is
small, and lets very little light through, causing very low signal to noise ratios. Attempts to
enlarge the pinhole, and let more light through, are stymied by an increase in image blur.
A fundamental trade-off between SNR and resolution is observed with the pinhole camera.
For the X-ray astronomers, this trade-off was insufficient, so they moved away from the
pinhole in a quest to break the trade-off. In 1961, Mertz and Young published a paper
Mertz and Young (1961) on the use of carefully coded mask patterns. To an abstraction,
these masks behaved like an array of pinholes, spread in a carefully chosen manner. Details
of this approach are considered in Chapter 4.

Coded apertures in X-ray imaging were just the beginning of the computational imaging
revolution. Today, we have access to a tool that lies outside the grasp of the ancient
Assyrians (inventors of the first lens), ancient Greeks and Chinese (inventors of the pinhole
camera), and Renaissance Europe (inventors of the telescope). This tool is the computer.

1.3 Modern uses of Computational Imaging

The timing of this inaugural textbook on “computational imaging” is aligned with the wide
use of computational imaging systems in industrial and scientific practice. In what follows,
we describe a few application areas of computational imaging and where they can be found
in subsequent portions of the book.

• Smartphone Photography

Many of the computational imaging techniques in this book can be directly prototyped
or subsequently ported to smartphone imaging systems. For instance, the problem set
complementing Chapter 6 focuses on how to convert a smart phone into a lightfield
camera. Industry practitioners may use the term computational photography to refer to
cases where a computational imagingmethod is used for the specific problem of photog-
raphy. For consistencywith this text, wewill stick to the term of computational imaging.
The dominant industrial use of computational imaging is on consumer smartphones.
Large technology companies, like Apple and Google have dedicated computational
photography teams. As contemporary readers are doubtless aware, smartphones have
become omnipresent, portable cameras in our pockets. According to InfoTrends via
Bitkom, from 2015 onwards, the number of photographs captured worldwide has been
over 1 trillion, with a 10% increase every year. A staggering 85% of those were captured
with mobile phones. Computational imaging techniques are particularly well-suited for
smartphone applications, which are often hardware constrained. The thin body of a
cellular phone does not enable specialized lenses. Bulk production costs limit exotic
design. To generate aesthetically pleasing photographs, practitioners must innovate on
the algorithmic side. Chapter 4 of this book discusses how a combination of imaging
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Figure 1.2: Example of a room-sized pin-hole camera.

sensors, optical aperture and illumination can be used in different ways to enhance
imaging capabilities. An example of this is the high-dynamic-range imaging feature
that is present in all modern smartphones and uses the computational imaging approach.

• Autonomous Driving

Computational imaging systems can be used to upgrade the visual acuity of autonomous
cars to superhuman levels. An autonomous vehicle, also known as a self-driving car, is
a vehicle that is capable of actively sensing the surrounding environment and driving
safely in cases where the human input is minimal or absent altogether. It is not a
requirement that camera sensors on these cars should mimic the human eye: they can
surpass it.

The importance of vision sensors to autonomous driving is hard to overstate. An early
joke about self-driving cars equipped with 3D LiDAR systems would often be along
the lines of: “that LiDAR costs more than the car”. Chapter 5 of this book discusses
time-resolved imaging on which LiDAR is based. Although costs of LiDAR have come
down tremendously, the exorbitant price in the early years illustrates the importance of
LiDAR to safe navigation—engineers would not have used such expensive LiDARs if
the data wasn’t critical for downstream performance.

Beyond the fundamental exposition in Chapter 5, readers interested in autonomous
driving may find Chapter 10 of interest where this topic is further discussed from the
perspective of light transport. The chapter discusses cases of multipath interference
(e.g. driving through fog), as well as seeing around corners. Recent papers have
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Figure 1.3: Roadmap and Organization of this Book.

integrated computational imaging systems that can see around corners with vehicular
platforms.

• Medical Imaging

Earlier in this chapter we used the example of X-rays and CAT scanners to introduce
the notion of imaging and computational imaging, respectively. However, this is just
scratching the surface of the medical applications in computational imaging.

In Chapter 4, we discuss coded exposure imaging, an idea that has been used for imaging
of flowing cells in flow cytometry. In Chapter 5, we touch upon how consumer-grade
depth imaging sensors, such as theMicrosoftKinect, can be re-purposed for bio-imaging
tasks such as fluorescence lifetime imaging. Finally, in Chapter 10, we discuss how
global and direct separation of light transport can be used as a technique to potentially
see deeper inside the body without using X-rays.

1.4 Roadmap of the Book

With the goal of turning newcomers into practitioners or sharpening the skills of experts
alike, the book has three parts, illustrated in Fig. 1.3.

Part I. The first part of this book introduces the basic preliminary knowledge that is
required to study and innocence in computational imaging. Since the field
is a co-design of optics and computation, we briefly review an optical toolkit
(Chapter 2) and a computational toolkit (Chapter 3). For newcomers to the
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field, it is recommended to have some familiarity with Part I before moving on
to subsequent portions of the book.

Part II. The discussion moves into the frontier of research, where the co-design of optics
and computation is studied in the context of different modalities of light. What
unifies part II of this book is the plenoptic function which describes the degrees
of freedom of a light ray. The function describes how an image need not only
be a function of space (Chapter 4), but also angle (Chapter 5), time (Chapter 6),
polarization (Chapter 7), and wavelength (Chapter 8).

Part III. The concluding part of the book ends with a description of light transport tech-
niques. By analyzing shadows and smartly coding illumination, it is possible
to design imaging systems that obtain micron-scale 3D shape or optimize for
noise-free imaging (Chapter 9). We conclude the book by describing advanced
techniques in computational light transport (Chapter 10), including optical com-
puting and non-line-of-sight imaging.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

I TABLE PART



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

2 Imaging Toolkit

In this chapter, our goal is to develop an understanding of the digital image formation
model that is central to most modern day imaging devices. Building upon the foundations
of the image formation model and the various parameters associated with it allows us to
understand the limitations of the conventional imaging pipeline. This will be critical in
later chapters as we will see how the computational imaging philosophy helps us go beyond
what is conventionally possible.

2.1 Optics

2.1.1 Animal Eyes
The human eye is a very sophisticated image capturing device. It uses a lens to focalise the
light reflected by an object onto the retina, which is made up of photosensitive cells called
cones and rods. The functioning principle is similar to that of a modern photo camera.
However, during its evolution journey, the animal eye was not always this complex. An
earlier anatomy, which can still be seen today in animals such as the marine mollusc called
nautilus, is the rudimentary pinhole eye, which is simply a sphere with a tiny hole in front
and a layer of photoreceptors on the opposite side.

2.1.2 Light, Waves and Particles
A light ray is modeled as a line describing the trace that a photon might leave behind. When
capturing an image, conceptually each pixel captures the color of a ray of light. Therefore,
the image allows us to detect the environment by mapping visible external points to points
on the camera sensor.

However, light rays are not used only for measuring the environment; they can also be used
to investigate optical systems, e.g., the lens surface or its coating. The light is generally
attenuated from source to destination. The reversibility property of light rays means that
the overall attenuation for a ray is the same if you were to swap the source and destination.
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Conceptually, light rays are infinitesimal in width, and have an infinitesimal point of
emergence. Therefore measuring a single ray is challenging. To better understand light,
we need to look at several models that describe it.

Firstly, light can be described as an electromagnetic wave. Therefore all light frequencies,
from low-frequency radio signals to high-frequency cosmic rays, propagate through vacuum
at a constant rate

c = 299,792,458 meters/s.

The frequency ν and wavelength λ are linked via the equation

ν =
c
λ
,

such that a ray with high frequency, such as gamma rays, have a very small wavelength. It
is important to point out that the light we typically measure propagates at speeds smaller
than c since it is obstructed by the surrounding matter particles.

The wavelength has tremendous impact on the way the light wave propagates. For instance,
when we drive underneath a bridge, we can always see our surroundings, however the AM
radio signal is likely to flicker. This is because of the difference in wavelength between the
two electromagnetic waves. The visible light has low wavelength compared to the bridge
opening, and therefore passes unobstructed. The wavelength of radio signals however is
too large and therefore our antenna only picks up a noisy residue.

While initially viewed as a waveform, Albert Einstein showed for the first time that light
can be quantized as a stream of photon particles. Modeling light as a wave is convenient on
a macroscopic scale; still, more complex processing, such as analysing light interference
caused by diffraction through lenses, requires using the particle light model. This is useful
if we are trying to understand, for instance, what is the maximum image resolution achieved
with a given lens, and why this is dependent on the lens size. In this course, light will
primarily be viewed using the wave or ray models.

In empty space, photons are well described by the ray model: single photon traces that
don’t interact with each other. Their wave-like behaviour emerges in closed environments,
such as when passing through a pinhole of size comparable to the wavelength. As we will
discuss later, this causes diffraction which is a wave-specific phenomenon.

The energy transported by a single photon is measured as

E = h
c
λ
= hν,

where h = 6.62610 × 10−34 Joules · s denotes Planck’s constant, ν is the frequency and λ
is the wavelength.
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Figure 2.1: The Ideal Point Source. A point source with radiant flux Φ and the irradi-
ance/exitance for an imaginary sphere.

This means that higher frequency photons carry significantly more energy. That is why
higher frequency light (such as ultraviolet, x-ray) is more dangerous and can damage our
bodies. One single photon carries an insignificant amount of energy, e.g., , 4×10−18 Joules
for visible light. Interestingly, when the human eyes are fully adapted to darkness, our rod
cells can detect light bursts as small as 8 − 10 photons Hecht et al. (1942).

2.1.3 Measuring Light with Rays
The light is affected by a range of factors such as

• the power transmitted

• direction of radiation

• area of real or imaginary surfaces

• wavelength

• visibility

The power transmitted is measured by the radiant flux Φ, which is defined as the energy
emitted, reflected, transmitted, or received, per unit time, and is measured in Watts, or
Joules/s.
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In the following we introduce a simplified model of a light source called the ideal point
source light, which is infinitesimal in size and radiates light outward uniformly in all
directions. The point source is described by a radiant flux Φ. Let us consider an imaginary
sphere centered in the point source, as in Fig. 2.1.

The point source has a number of properties listed below

• All the rays in the point source arrive perpendicularly on the imaginary sphere at the
same time

• There is a one-to-one mapping between the sphere points and rays: every point on the
sphere has a corresponding ray

• The rays therefore form a continuum and their number is uncountably infinite (similarly
to the number of real values)

• The radiant flux is transmitted equally across the sphere’s surface

Thus each ray emitted by the point source carries 0 W , and one can only measure a 2D
beam containing an uncountably infinite number of rays.

The irradiance is subsequently introduced to define the radiant flux incident to an area on
the sphere for an ideal point source as

R =
Φ

4πr2 ,

whereΦ is the radiant flux and r is the sphere radius. The irradiance is measured in W/m2,
and is inversely proportional to the square of the sphere radius. For example, increasing
the radius 10 times leads to an irradiance 100 times smaller for the new sphere. Given that
the irradiance describes a particular spatial area on the sphere, we say that it measures the
spatial power density .

The irradiance can be introduced in a more general context, where the surface is not
necessarily a sphere. The value at a point on the surface is given by

R =
dΦ
dA
.

For the radiance leaving the surface of interest we introduce the exitance M , measured in
W/m2.

In addition to the spatial power density, a thorough description of light requires introducing
a way tomeasure the angular power density . In other words, we need to describe the radiant
flux inside a beam of light. A 3D beam of light requires introducing a generalisation of the
2D angle known as the solid angle .
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Figure 2.2: The Steradian and the Solid Angle of a Cone-Shaped Beam.

Let us assume we have a cone-shaped beam of light. The unit measure for the solid angle is
the steradian, which is defined by a cone with the vertex in the center of a sphere of radius
r whose base delimits a spherical “cap” of area r2. The diagram of a steradian is depicted
in Fig. 2.2.

We can now introduce the general solid angle Ω as

Ω = 2π (1 − cos (α)) sr,

where sr stands for steradians and α represents the half of the top planar angle of a cross-
section of the solid angle, as shown in Fig. 2.2.

We point out that the solid angle corresponding to a whole sphere isΩ = 2π (1 − cos (π)) =
4π sr. We can now introduce the radiant intensity, which is measuring the angular power
density. For an ideal cone-shaped beam of light covering solid angle Ω with uniformly
spread radiant flux Φ, the radiant intensity satisfies

I =
Φ

Ω
.

For example, a beam covering a whole sphere has a very low intensity I = Φ
4π = 0.08 ·

Φ, meaning that one steradian contains a little proportion of the incoming light power.
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Figure 2.3: The Area Illuminated by a Parallel Beam as a Function of the Incident Angle.

However, if we focus the same power in a beam covering the 1000th part of a sphere, the
intensity is significantly larger at I = 80Φ.

The irradiance and radiant intensity allow us to model lighting phenomena such as the
difference in heat between noon and dusk. At any time, a beam of light from the sun,
approximated here as a beam of parallel rays, illuminates an area on the ground that is
proportional to 1/cos (α), where α is the beam incidence angle, as shown in Fig. 2.3.

Therefore a given fixed area A on the ground is characterised by an irradiance that changes
with the incident angle α as

E (α) = Φ · cos (α)
A

,

where Φ is the uniformly spread radiant flux of the beam of light covering the correspond-
ing area. In this case we point out that the irradiance reaches a peak value when the
incidence angle is 0, and the irradiance vanishes when the sun moves behind the horizon,
corresponding to an incidence angle α = π/2.

In a real life application the objective is not to capture the irradiance, or the radiance
intensity, but the radiance L, which represents the ray strength, measuring the combined
angular and spatial power densities.

The radiance is described by the equation

L =
d2Φ

dA dΩ
· 1

cos(α) ,

where Ω is the solid angle, A is the area and α is the incidence angle.
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(a) (b)

Figure 2.4: The Pinhole Camera. (a) The camera obscura, a darkened room with only a
hole in a wall, is an example of the pinhole camera principle. (b) A diagram demonstrating
the pinhole camera principle.

2.1.4 Pinhole Model
The principle underlying the biological eye is also the functioning principle of the first
man-made cameras, called pinhole cameras Young (1989). They are based on a box with a
1/2 millimeter hole, and a photosensitive layer on the opposite side.

The functioning principle of the pinhole camera, which is identical to that of a camera
obscura, is depicted in Fig. 2.4a. In a camera obscura, which is a dark room with only
a tiny hole in one of its walls, the light gets projected upside down on the opposite wall.
This opposite wall is also called a projection plane, and the axis passing through the hole
perpendicular on the projection plane is called an optical axis. Because the light travels
in straight lines, and the hole is very small, each point on the projection plane is mapped
uniquely to a point from the outside scene.

The diagram of the pinhole camera principle is in Fig. 2.4b. Here, the coordinate frame is
placed with coordinate Z along the optical axis, coordinateY perpendicular on the diagram
plane - and therefore not displayed, and the center in the pinhole. The distance d between the
pinhole and the projection plane is called a focal distance, X0, Y0, Z0 denote the coordinates
of a point in the scene, and −x, −y, d denote the coordinates of the corresponding point in
the projection plane. Then it follows that x = −d

X0
Z0

and y = −d
Y0
Z0

. In a more compact
form, the model of the ideal pinhole camera is



x

y

1


∼



d 0 0 0
0 d 0 0
0 0 1 0





X0

Y0

Z0

1



.
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Figure 2.5: The PinspeckCamera. This imaging device is based on the opposite functioning
principle of the pinhole camera, casting shadows that form a negative image.

Here, ∼ means that the two quantities are proportional. If we want to produce a digital
image, then the coordinates of a pixel on the projection plane xp , yp satisfy xp = sx x,
yp = sy y, where sx , sy represent the scaling constants. In a real scenario, the coordinate
system in the projection plane is not centered on the optical axis. Therefore we introduce
constants u0, v0 to account for this:



x

y

1


∼



sxd 0 u0 0
0 syd v0 0
0 0 1 0





X0

Y0

Z0

1



.

Moreover, to generate a more realistic model, we need to take into account the skew effect
caused by the fact that the optical axis may not be perfectly perpendicular on the projection
plane. This effect is modeled by the skew factor α, leading to the final internal camera
model:



x

y

1


∼



sxd α u0 0
0 syd v0 0
0 0 1 0





X0

Y0

Z0

1



.

A pinhole camera creates an image by projecting light onto a plane. However, an image can
be created using the opposite principle, by casting shadow. This is the functioning principle
of the pinspeck camera Cohen (1982). Instead of a tiny hole, this camera is based on a
wide aperture with a small speck in the middle. When objects are illuminating the camera,
the speck is casting a shadow on the projection plane, effectively creating a negative image.
The diagram of the pinspeck camera is depicted in Fig. 2.5.
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Figure 2.6: The Pinhole Camera Diffraction. When the pinhole size is comparable to the
wavelength of the incoming light, a distant object is imaged as a circular disk with rings
around it.

Pinhole (and pinspeck) cameras are good mechanisms to study light properties. However,
from a practical perspective, they are subject to several problems, such as long exposure
times, limited sharpness and limited field of view. The exposure time is long because the
pinhole only permits a small number of light rays to hit the sensor plane per time unit,
which means that it takes longer for an image to be created. The image sharpness for a
pinhole camera is inversely proportional to the hole size. However, holes that are too small
cause diffraction, or bending of light around the corners of the hole.

It is therefore important to find the right pinhole aperture size δ to capture good photographs.
As we discussed before, for larger pinholes each point on the projection plane is mapped to
a point of the scene along a series of lines, as depicted in Fig. 2.6. Therefore a distant object
is imaged as a disk of radius δ. However, when δ is comparable with λ, the incoming light
wavelength, the diffraction phenomenon causes the light rays passing close to the aperture
boundaries to bend, leading to a circular disk with rings around it, as depicted in Fig. 2.6.
The diameter of the disk is given by D = 2.44 · λ d

δ
.

The optimal aperture size is when the disk of the diffraction pattern has diameter δ. A
smaller aperture would cause distortion due to diffraction, and a larger one would lead
to blurry images due to loss in sharpness. Let us compute the optimal aperture size for
the wavelength located in the center of the visible spectrum λ = 500 nm. Given that the
focal distance d is measured in millimeters, after the appropriate conversions, the optimal
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Figure 2.7: The Refraction Principle. A ray of light is bent at the boundary of twomaterials
with an angle given by Snell’s law.

aperture size is
δopt = 2.44 · λ d

δopt
=⇒ δopt = 0.035

√
d.

However, the estimation above assumes that all imaged objects are far from the aperture.
Close by objects would create disks larger than the aperture and thus distort the image.
Moreover, the smaller the hole gets, the more it limits the field of view–at the limit, a hole
of infinitesimal width only allows rays perpendicular to the projection plane to enter the
camera.

2.1.5 Ray Bending and Lenses
Given all the drawbacks of pinhole cameras mentioned before, a better device is needed for
successful photography. The lens, the component of choice in modern cameras, is based on
the refraction principle. When a light ray passes through the smooth boundary of different
materials, it is bent by an angle depending on the indices of refraction of the two materials.
The index of refraction is a constant characteristic to each material, and the refraction is
governed by Snell’s law:

n1 sin (θ1) = n2 sin (θ2) ,



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

2.1 Optics 13












Figure 2.8: The Diagram of a Thin Lens. A point in the scene (black dot) is in focus if the
light it reflects towards the lens converges on the sensor plane. When the camera refocuses
on a different point, the sensor plane moves relative to the lens.

where n1, n2 are the indices of refraction, and θ1, θ2 are the angle of incidence and angle
of refraction, respectively. The bending process, called refraction, is depicted in Fig. 2.7.

A lens has a relatively generic definition. Any object that bends incoming rays into outgoing
rays can be considered a lens. The number of lenses that can be generated based on how
they refract light according to Snell’s law is very large. However, in optics it is common to
use an idealised concept, called thin lens. A thin lens, also called paraxial, is a plane that
bends light governed only by three parameters: the focal length, the aperture diameter and
the lens speed.

The focal length f is defined as the distance in millimeters between a thin lens and the
point of convergence of a number of parallel rays passing through the lens. The inverse
of the focal length 1/ f is known as the focusing power, and is measured in diopters. This
parameter is an important characteristic of common glasses.

The aperture diameter D is the diameter of the base of a conical shaped ray bundle passing
through the lens. In other words, it is the diameter of the largest portion of the lens that is
bending light.

The lens speed, or f-number N is the ratio between the focal length and the aperture
diameter. It describes the ability of the lens to transmit light, i.e., the required exposure
time for capturing an image.
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Figure 2.9: Lens-Based Camera Obscura. The first cameras required a manual adjustment
of the exposure time. Reprinted from Raskar and Tumblin (2011).

The light bending principle with a thin lens is depicted in Fig. 2.8. A scene point is in focus
relative to a thin lens and a sensor plane if it obeys the thin lens equation:

1
S1
+

1
S2
=

1
f
,

where S1 is the distance between the lens and the object in focus, S2 is the distance between
the lens and the sensor plane, and f is the focal length.

In the early days of photography, capturing an image required focusing manually the camera
using a ground-glass viewer, inserting the light-sensitive plate inside the camera, and then
manually controlling the exposure time by removing the cap from the lens for a predefined
amount of time, as shown in Fig. 2.9. Initially, this time was measured in hours, but it
decreased to milliseconds thanks to the development of light sensors. Automatic shutters
allowed for a fine control of the exposure time.

When we capture an image with a modern digital camera the device itself automatically
tunes a large number of parameters to allow a crisp and detailed view of the scene. Those
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parameters can relate to the camera as a whole, to the camera lens, to the shutter or to the
light sensor.

The camera itself has a certain position and orientation in space, allowing it to capture a
portion of the scene. For a dynamic scene, the time of the capture is another important
parameter. The scene lighting, either coming from the camera flash or from an external
source, can affect the colours or visibility of the scene objects.

The light reflected by the scene first meets the opening of the camera shutter. This opening
is called aperture, controlling how many light rays enter the camera at any given moment.
This parameter is tightly connected with the exposure time, which measures how long the
shutter is kept open. Therefore, a small aperture and short exposure time lead to darker
images. However, apart from image brightness, the two parameters have different effects
on the image, as it will be explained later.

After passing through the aperture, the light rays are bent by the camera lens. This is
determined by the lens focal length, describing how fast parallel light beams converge after
passing through the lens. This parameter affects the width of the field of view. A lens with
short focal length corresponds to a wide field of view, which allows it to capture a larger
portion of the scene. At the same time, the short focal length lens in conjunction with a
small aperture allows a much longer depth of field. Lenses with wide fields of view shrink
scene features and exaggerate foreshortening (depth-dependent size). On the other hand,
lenses with narrow fields of view, also known as telephoto lenses, enlarge scene features
and reduce foreshortening.

Using lenses instead of pinholes vastly increases the final image brightness, as discussed
previously. Therefore, clearly, fewer rays emitted by a distant object would reach the
camera. This might suggest that this object could appear less bright in the image, but that
is not true for the following reason.

If we double the distance between an object and the camera, the light beam detected by
the camera is decreased by 1/2 both horizontally and vertically, leading to a solid angle
decreased by 1/4, and therefore a radiant flux Φ smaller by 1/4. However, the brightness of
each point of the object projected on the sensor is given by the irradiance R = dΦ

dA , where
A denotes the area on the sensor being illuminated by the point. Given that the solid angle
of the light beam is 1/4 smaller, it follows that the area A projected on the sensor is also
decreased by 1/4, and thus the average irradiance of the object in question R = ΦA stays the
same.

By comparison with the human eye, we can define a normal lens as a lens that replicates
approximately the eye’s field of view. Given that the field of view is affected by the focal
length, a normal lens has its focal length approximately equal to the diagonal dimension
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Figure 2.10: The Ray Bending Diagram for the One Surface of a Thin Lens. The ray
reflected by the object (red) intersects the lens surface at distance h from the optical axis.
Snell’s law governs the new direction of the ray relative to the line normal to the surface
(black dotted line).

of the film or digital sensor that captures the photograph. However, in order to create a
realistic perception, we need to take into account that typically we view images from a
distance, which is why in practice the normal lens generates slightly larger fields of view
than the biological eye. Wide angle lenses are used to capture larger areas of the scene that
could not be accommodated by normal lenses. This leads to distorted looking photographs,
but the effect is typically addressed with larger prints.

When one attempts to photograph a tall object in a scene such as a building, they notice
the tilt effect, meaning that the object in the image seems to lean backwards. This is due
to the upward tilt in the camera required to include the whole building in the image frame.
Professional photographs, or architects, are interested in capturing a tall object that looks
straight in the final photograph. One option is the post-processing of the image. However
the problem can be solved by capturing the image with a tilt-shift lens that compensates for
this effect.

In order to understand the limits of the thin lens formula, let us consider one surface of a
convex lens, as in Fig. 2.10. When the ray intersects the lens surface, it is being refracted
according to Snell’s law. However, because the lens surface is not flat, the incidence angle
θ1 is computed relative to the line normal to the surface. Therefore Snell’s law is

n1 sin (θ1) = n2 sin (θ2) .
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Furthermore, we can derive the following

θ1 = γ + α1, θ2 = γ − α2,

tan (α1) =
h
p
, tan (α2) =

h
q
, sin (γ) = h

R
.

The trigonometric expressions above lead to rather complex calculations. Therefore it is
common to use the paraxial approximation, which assumes that the angle between the light
ray and the optical axis is very small. From trigonometry, we know that when an angle β
is very small, then we can say that β � tan (β) � sin(β). Using this approximation, the
equations become

n1θ1 = n2θ2,

θ1 = γ + α1, θ2 = γ − α2,

α1 =
h
p
, α2 =

h
q
, γ =

h
R
.

If we substitute the last two lines in the first equation we have that

n1

(
1
p
+

1
R

)
= n2

(
1
R
− 1

q

)
⇐⇒ n2 − n1

R
=

n1
p
+

n2
q
.

We now combine the equations describing light bending on both sides of the lens to yield
the lens equation (

n2
n1

− 1
) (

1
R1

− 1
R2

)
=

1
p
+

1
q
,

where R1, R2 are the radii of the two surfaces of the lens. Now let us assume that the object
is located far away from the lens. In this scenario we have that

p → ∞, q → f, α1,2 → 0, Θ1,2 → 0, γ → 0,

where f is the focal length of the lens, which is in line with the paraxial approximation.
The lens equation then takes the following form, which is also known as the Lens Maker’s
Equation: (

n2
n1

− 1
) (

1
R1

− 1
R2

)
=

1
f
.

The two versions of the equation also lead to the previously introduced thin lens equation
1
p
+

1
q
=

1
f
.

As we have seen before, this equation describes how to change the distance between the
sensor and the lens in order to keep an object in focus. However, having understood its
derivation, it is important to remember that it relies on the paraxial approximation. This
means that the equation will no longer be precise for objects that are close to the lens and
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not on the optical axis. Similarly, the object may not be close, but if the lens is large,
then the paraxial approximation would not hold for rays intersecting the lens at its outer
boundaries.

In the equations above 1/ f is the focusing power of the lens. The explanation of its name is
intuitive. When 1/ f increases then q decreases, meaning that the rays converge faster and
thus we say that the lens has a higher focusing power.

Let us see what happens when we place two thin lenses in a sequence. The equations are
given by

1
pi
+

1
qi
=

1
fi
, i = 1,2.

In this case the rule is that the object plane of the second thin lens is located at −q2, where
q2 is the focus plane of the first thin lens. Therefore p2 = −q2 and thus, by adding the
equations above we get

1
p1
+

1
q2
=

1
f1
+

1
f2
=

1
fc
,

where fc is the focal length of the compound lens. We notice that the focusing power of
the compound lens is the sum of the focusing powers of each individual lens. Conversely,
we can work out the focal length of the compound lens fc as fc =

f1f2
f1 + f2

. Intuitively, the
second lens makes the rays that pass through the first lens converge even faster, therefore
leading to an accumulated focusing power.

If the two lenses are separated by length d then the equation becomes Ronchi and Rosen
(1991)

1
p1
+

1
q2
=

1
f1
+

1
f2

− d
f1f2
.

A real lens does not necessarily need to be spherical. The main categories of lens shapes,
defining how they bend the light, are presented in Fig. 2.11.

One may wonder why it is needed to use more than one lens. It turns out that when using
a single element spherical lens the image of the object is not created on a plane, but on a
sphere. This optical aberration is known as the “Petzval field curvature” or simply the field
curvature. This means we cannot focus an entire object on a plane sensor, which causes the
image to look blurred around the edges. Other than using complex lens designs, a hardware
solution is to use a curved imaging sensor that compensates for this effect. An example of
such an imaging sensor, namely, NASA’s “Kepler Focal Plane Array” is shown in Fig. 2.12.

Away to address this to use themeniscus lens, which creates amuch flatter image. However,
this lens introduces chromatic aberration, meaning that it focalises different waveforms on
different planes.
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Figure 2.11: The Main Lens Types. There are several lens categories depending on the
shapes of its two surfaces.

The paraxial approximation is a big constraint on the lens size and object position relative
to the lens. It assumes that β � sin (β) for small values of β. This estimation actually
comes from the Taylor series expansion of the sine which states that

sin (β) = β + β
3

3!
+
β5

5!
+ · · · .

The estimation is more precise if we include more terms. For example, Ludwig von Seidel

used the 3rd order approximation sin (β) � β + β
3

3!
to evaluate the imperfections of lenses,

and concluded that there are 5 aberrations that make real lenses bend light differently to a
perfect lens. Therefore one may wonder why don’t we use very high order optics in order
to make better lenses? It turns out that making less regular lenses is very expensive, and it
is much more affordable to use stacks of compound lenses of simple shapes.

A well known example of lens imperfection is the chromatic aberration, also called disper-
sion. The phenomenon, depicted in Fig. 2.13, causes light rays of different wavelengths
to focus at variable distances form the lens. In essence, it means that the lens has a
wavelength dependent focal length. One option to correct this is based on the observation
that plano-concave lenses also bend different wavelengths differently, but in the opposite
direction. Therefore the dispersion can be corrected by pairing up the bi-convex lens with
a plano-concave lens as in Fig. 2.13. In 8.3.1, we will even see how the properties of
dispersion are used in image capture setups to obtain spectral information.
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Figure 2.12: The Image Curvature Effect and the Kepler Focal Plane Array. When using a
single element spherical lens it is not possible to focus a whole object on the sensor plane,
and thus the edges look out of focus. Unlike conventional digital sensors, the imaging sensor
array used in the Kepler space observatory is curved so that the Petzval “field curvature”
can be compensated. Credit: NASA and Ball Aerospace [link].

As one might expect, using a stack of two lenses can correct the chromatic aberration for
two frequencies, resulting in an achromat lens. The same principle can be applied by
stacking up three (apochromat) and four (superchromat) lenses, which corrects three and
four frequencies, respectively. However this also leads to an increase in cost.

Another lens aberration is given by the fact that a proportion of the light is reflected by each
lens, bouncing back and causing flares and other undesired effects. The ratio of reflected
light intensity between two materials is given by Fresnel’s equation

r =

√
|n2 − n1 |
n2 + n1

,

where n1 and n2 are the refractive indices of the two materials, and r is the amplitude
ratio of the reflected light. For the case of the air/glass reflectivity, we have that n1 = 1,
n2 = 1.5 and this leads to r = 0.2. This corresponds to a ratio of reflected light intensity
of r2 = 0.04 or 4%. It is important to point out that this ratio of light intensity is reflected

https://www.nasa.gov/mission_pages/kepler/multimedia/images/kepler-focal-plane-assembly.html
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Frequency‐dependent 
focal length 

Figure 2.13: Correcting the Chromatic Aberration. Bi-convex lenses have a frequency
dependent focal length. This can be corrected by pairing it with a plano-concave lens.

at the boundary of every two materials, meaning that it is specifically undesirable for large
stacks of compound lenses.

The solution in this case is applying a layer of anti-reflective coating on each lens. This
will not stop the reflection, but it will cancel out the reflected light to prevent the image
from being distorted. The coating introduces a new boundary of reflection, and this results
in two separate light reflections, one caused by the coating and the second by the glass, as
depicted in Fig. 2.14. The two reflected rays are subject to the following conditions

1. The rays should have identical intensities.

2. The phases of the rays should be opposite.

These two conditions ensure that the reflections cancel each other, as shown in Fig. 2.14.
Let n1, n2, n3 be the refractive indices of the three regions. Assuming that n1 < n2 < n3,



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

22 Chapter 2 Imaging Toolkit

Anti‐reflective coating 

Glass 

Incoming ray 
intensity 

First  
reflection 

Second 
reflection 

Transmitted ray 

𝑑  Refractive index 𝑛ଶ Refractive index 𝑛ଵ 
Refractive index 𝑛ଷ 

W
avelength

Figure 2.14: The Functioning Principle of the Anti-Reflective Coating. The incoming light
ray is reflected twice by the coating layer and the glass respectively. The two reflections are
in opposite phases and thus cancel each other. Here the sinusoidal curves do not represent
the ray paths, but their intensities.

condition 1 can be written as
n2 − n1
n2 + n1

=
n3 − n2
n3 + n2

⇐⇒ n3n2 − n3n1 + n2
2 − n2n1 = n3n2 + n3n1 − n2

2 − n2n1.

It is easy to see that the condition above is satisfied for n2 =
√

n1n3, which gives us the
refractive index of the coating layer.

Condition two is satisfied by choosing the thickness of the coating layer d = λ
4 , where λ is

the wavelength of the incoming light. This ensures that by the time the second reflection
travels through the coating layer twice, amounting to half of its wavelength, its phase is
opposite to that of the first reflection and thus it cancels it out.

As before, this correction only works for one wavelength. Typically lenses have two or
three coating layers to cover a larger portion of the spectrum.
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2.1.6 Lenses and Focus
In the previous subsection we saw how Snell’s law determines when a point in the scene
is in focus. However, Snell’s law can’t be used on a regular basis to focus a camera in a
real-life scenario simply because the length S1 from the lens to the object is most of the
time unknown.

In the early days of photography, focusing was done by moving the lens manually to
maximise the image contrast.

One of the mainmethods to focus a camera is phase-based autofocus. This was used in 1977
for the first autofocus camera, called Konica C35 AF. Specifically, the autofocus system is
measuring the light intensity on the sensor originating from two halves of the lens. Each
of the two halves generates an intensity curve, as depicted in Fig. 2.15. The lens moves
relative to the sensor plane until the two curves are in phase, which ensures that the camera
is in focus.

Nowadays modern autofocus cameras embed the lens-translating motor in the lens itself.
Let us look in more detail at the functioning principle of phase-based autofocus. As shown
in Fig. 2.15, the system requires measurements of the intensity curves from different parts
of the lens. However this is not possible using only one lens and a sensor.

The system uses a beam splitter to measure light phase coming from the opposite sides of
the lens using 1D sensor arrays. The intensity curves can then be measured independently,
and their phase difference is used to compute the direction and distance of the lens motion.

Alternatively, a camera can use contrast-based autofocus. This mechanism involves a
sensor that calculates the contrast as the difference in light intensity of nearby pixels.
Unlike phase-based autofocus, the direction of movement cannot be derived immediately
and requires a search routine. Therefore contrast-based autofocus is slower as is used in
some smaller setups such as cell-phone cameras.

A third category of focusingmethods is given by active autofocus. This involvesmeasuring
the distance to the object independently using ultrasound waves or infrared light. This
principle doesn’t require a minimal contrast in the scene to work, but even so it generally
leads to lower performances.

Besides choosing the right focusing mechanism, a separate problem is that the scene has
several planes where the camera can focus. Some cameras automatically focus on the
objects that are closest, brightest or have the highest contrast. Modern cameras perform
live face detection to pick the focus plane, or allow the user to manually select the plane,
typically through tapping on the desired scene point on a touchscreen.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.15: The Ray Diagrams for a Lens Bending Rays Reflected by an Object. The case
when the intersection between the rays from the upper and lower half of the lens (a) falls
onto the sensor plane (c) in front of the sensor plane and (e) behind the sensor plane. The
corresponding intensities along the sensor plane (b), (d), (f). The green and red curves in
(d), (f) show how the two lens halves generate out-of-phase intensity functions when the
object is out-of-focus. The intensity curves can then be measured independently, and their
phase difference is used to compute the direction and distance of the lens motion. Reprinted
from Ramanath et al. (2005).
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Figure 2.16: An Example of Lensless MURA Photography. (a) Mask used to capture the
image. (b) Detected image. (c) Image reconstructed from the measurements. (d) MURA
patterns with different matrix sizes.

2.1.7 Masks and Aperture Manipulation
In the previous subsection we saw how adding an obstacle in the light pathway, a mask with
a rectangular window in its center, allowed separating the light coming from different parts
of the lens and revealed information that otherwise would have been unknown: the level of
focus on an object in the scene. Generally speaking, masks represent planar elements that
occlude or attenuate light rays in a spatially varying fashion.

Interestingly, it is possible to fully replace the lens with a mask. Compared to lens
imaging, this allows extracting new information from the image. Compared to a pinhole
camera, which is using a mask with a single hole, this approach has a much higher light
throughput leading to brighter images. The drawback however is that the image requires
post-processing. This idea is elaborated further for different applications in 4.

One of the examples of such an application in photography is the Modified Uniformly
Redundant Array (MURA) architecture, which gathers around 22,000 times more light
than a pinhole camera using a mask that is almost 50% empty Gottesman and Fenimore
(1989). The mask is defined by a binary matrix Ai, j such that a value 0 represents an
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occluder and a 1 denotes a gap allowing the light to pass through. The matrix Ai, j is
displayed in Fig. 2.16-(a), where white corresponds to 1 and black corresponds to 0.

The raw captured image, depicted in Fig. 2.16-(b), does not reveal a lot about the scene.
However, a decoding algorithm allows recovering a high quality image Fig. 2.16-(c). Further
examples of MURA patterns with different matrix sizes are shown in Fig. 2.16-(d).

The same concept was later extended by replacing the lens with a series of light-attenuating
layers that can be controlled in both time and space Zomet and Nayar (2006). This setup
allows extracting more information from the measurements, such as changing the viewing
angle after the image was captured.

Masks have also been used together with lenses to generate images. The mask can be
positioned in three places relative to the imaging system

1. On the camera aperture.

2. On the sensor.

3. On the scene.

Masks placed at the aperture level reveal many interesting properties of the scene. For
example, in Farid and Simoncelli (1998) the authors compute the differentiation of the
image intensity that is passing through a mask as the camera viewpoint changes. They
demonstrate that two masks can be applied such that the derivatives calculated for each
mask can be used to estimate the range of the scene. Later it was also shown that both
conventional photographs and the corresponding depth maps can be recovered by placing a
mask at the aperture of a consumer grade camera Levin et al. (2007), therefore applying a
technique known asDepth fromDefocus. Single view depth estimation can also be achieved
using an end-to-end design approach, jointly designing the mask and the reconstruction
algorithm Wu et al. (2019).

Rather than applying a mask, the camera aperture can be programmed to act like a mask.
Taking multiple photos with various aperture sizes and shapes can be used to generate an
imagewithmuch higher spatial resolution Liang et al. (2008, 2007). Sinha et al. (2017) use a
lensless imaging system and model the inverse transform as a deep neural network to obtain
the image phase. Further examples and several other state-of-the-art implementations are
discussed in the context of spatially coded imaging in Sub-section 4.1.5.

The second option for positioning a mask is on the sensor. The most common example,
existing on many consumer grade cameras, is that of the Bayer filter. A colored image is
made up of three images, each capturing the intensity of one of the colors red, green or
blue. Using the Bayer filter all three images can be captured at once with one single sensor
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Figure 2.17: Positions for Placing a Mask in a Camera.

array, by using pixels sensitive to each of the RGB colors placed in a pattern called the
Bayer pattern.

It is possible to project light only on selected regions of a sensor, an equivalent of placing a
mask on a sensor, by using a Digital Micromirror Device (DMD). A DMD is essentially an
array of micromirrors that have two possible orientations, reflecting the light either towards
the sensor array, or away from it. A DMD was used for computing high dynamic range
images, but also for performing object recognition Nayar et al. (2006). Using a DMD
allowed reducing the sensor array to a single pixel Takhar et al. (2006). This is done by
generating various patterns with the DMD, and directing the cumulated light towards the
pixel sensor. This system was used together with compressive sensing theory to generate
images of reduced size Takhar et al. (2006).

Placing a mask on the sensor or lens is easy to imagine, but placing a mask on the scene
would be more difficult generally. In this case it is common to simply illuminate certain
parts of a scene, while leaving others in darkness, which has a similar effect. This has been
done to extract the two sources of illumination in a scene: the direct illumination by the
source and the global illumination from other points in the scene Nayar et al. (2006). This
separation of the sources has a practical significance because each one reveals different
information about the scene. The direct component enhances the material properties of a
given point, and the global component reveals the optical properties of the scene, indicating
how a certain point is illuminated by other points in the scene.
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2.2 Image Sensors

2.2.1 Cameras, Rays and Radiance
A point in the scene is imaged by measuring the emitted/reflected light that converges on
the sensor plane. However a real sensor detects the light irradiance, which is zero if the light
is absorbed by the sensor only at a point. A single-pixel detector measures the irradiance
in the vicinity of the point receiving light from the scene.

Therefore the detected brightness depends on the area on the sensor that a light beam
covers. In the previous section we looked at how the light falling at an angle leads to the
“cosine falloff” effect, which means that the irradiance decreases with the cosine of the
light incident angle. One may then wonder why when looking at a screen at an angle the
image brightness does not change. The explanation of this is given by the fact that because
light has an incident angle, the new perspective captures more light rays, and therefore the
increased radiant intensity compensates for the larger area covered by the light beam on the
sensor.

After they are processed by the camera lenses, the light rays hit the sensor, which converts
them into electrical signals. The sensor affects the look of the final image with a range
of parameters. First, the light sensitivity, or ISO, can be used to brighten up dark images.
However, increasing the ISO also generates a noisier image. Moreover, the dynamic range,
defined as the range of luminance the sensor is able to detect, has a strong impact on the
clarity of the resulting image, especially if it contains both bright and dark areas. The
tonal range, on the other hand, is given by the actual number of tones captured by the
camera, and is affected by other sensor parameters such as ISO. The sensitivity of the
sensor to colour is called wavelength sensitivity, and can be adjusted on most cameras using
the colour-balance or saturation settings. The clarity of an image is, of course, strongly
influenced by the sensor spatial resolution, or the number of pixels on the sensor.

To view an object clearly, it must be at focusing distance from the lens. That is because the
light rays reflected by the points at focus distance converge on the sensor. When the camera
focuses on a different object, it changes the distance between the sensor and the lens, which
in turns changes the focusing distance. A focus measure can be used to determine the right
lens position to keep an image in focus. Fig. 2.18 depicts the focus measure as a function
of a lens’ position, and three captured images with different lens positions.

The depth of field is defined as the distance between the closest and farthest points in the
scene that the camera can focus on. The longest depth of field is achieved by a camera with
short focal length and small aperture. Even if points in the distant part of the scene may be
out-of-focus, a small aperture decreases how much the light rays diverge when they arrive
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Figure 2.18: Imaging for Different Lens Positions. An image captured with a gradually
improved focus (a-c). A focusmeasure as a function of the lens position, which ismaximised
when the image is in focus (d). Reprinted from Ramanath et al. (2005).

at the sensor. The human eye is subject to the same effect. That is why squinting can help
focus better on objects that are far away.

It can be observed that, in a camera, achieving a long depth of field will typically lead to
a darker image due to the small aperture. This can be fixed by increasing the exposure
time. If this scene is dynamic, this would cause motion blur. Increasing the ISO instead
addresses the brightness issue, but adds additional noise to the measurements.

The sensor is affected by several types of noise, where each type is more prevalent in
certain imaging environments. The read noise consists of the sensor pixel noise, and also
the noise generated by the analog-to-digital converter. This noise determines the contrast
of the captured image, and is affecting in a different way the CMOS and the CCD sensors,
since in the latter the ADC is not part of the actual sensor. The shot noise is due to the
discrete nature of electrons captured by the potential well, and is more prevalent in brighter
environments. A larger potential well is desired to address this type of noise.

Mathematically, the read noise is considered the Gaussian part of the noise, caused by
stationary disturbances, and the shot noise is the Poissonian part, caused by the sensing of
photons. Their names are given according to the distributions that model their values. As
the screens have higher and higher resolutions, the pixel sizes decrease and the sensitivity to
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photon noise increases for each pixel. Thus the shot noise is nowadays the main contributor
to noise in imaging sensors.

The overall noise is thus signal-dependent, very different from the usual additive white
Gaussian noise that is very common in image processing. The limited dynamic range
of pixels leads in many cases to over-exposure, or capturing light close to the maximum
capacity per pixel. This effect further enhances signal-dependent noise.

The measurements z(x, y) from a sensor at each pixel are given by

z(x, y) = I(x, y) + σ(I(x, y))ζ(x, y),

where x, y are the pixel position in 2D, I(x, y) is the light signal, ζ(x, y) is the Gaussian
noise of zero mean and standard deviation 1, and σ(I(x, y)) is the signal dependent standard
deviation. In the equation above, we are trying to estimate I(x, y) and σ(I(x, y)) from
measurements z(x, y).

To separate the influences of Gaussian and Poissonian noise, we write the measurements
deviation as Foi et al. (2008)

z(x, y) = I(x, y) + σ(I(x, y))ζ(x, y) = I(x, y) + ηp(I(x, y)) + ηg(x, y).

The noise distributions can be written as follows

I(x, y) + ηp(I(x, y)) ∼ a · P(a · I(x, y)),
ηg(x, y) ∼ N(0, b),

where P(r) is the Poisson distribution and N(m, v) is the Gaussian distribution with mean
m and variance v. It turns out that the standard deviation has the expression Foi et al. (2008)

σ(I(x, y)) =
√

a · I(x, y) + b.

Denoising is a common process in signal processing. However, removing a signal dependent
noise is a more challenging task. In Foi et al. (2008), the authors employ an algorithm in
several steps to recover the image I(x, y) and also estimate the varying standard deviation
σ(I(x, y)). First, the image needs to be divided in smooth regions. To this end, they employ
edge detection via segmentation. Second, they compute a local estimation of the standard
deviation in the smooth regions. This is based on the assumption that the changing standard
deviation is relatively constant in a local small region. Lastly, a global model of the noise
is fit using local measurements.
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2.2.2 Digital Image Formation
Theworld aswe see it using our eyes is a continuous three-dimensional function of the spatial
coordinates. A photograph is a two-dimensional map of the “no of photons” that map from
the three-dimensional scene. In film based photography, this map is a continuous function.
However, when referring to a digital image, the corresponding two-dimensional function
is a discrete representation because the number of pixels used for imaging are discrete and
finitely many. Hence, we can think of an image as a mathematical representation of a
physical entity that describes a function over spatial coordinates. The individual pixels are
the basic elements of the discrete representation of the continuous scene and in analogy to
one-dimensional case, these are the samples of a function with reference to the Shannon-
Nyquist sampling formula. Consequently, we must bear in mind that the image is merely
a representation of the scene and not the continuous scene itself. To understand the basis
of the image formation process, we must understand the physical laws that govern such a
process.

From a mathematical standpoint, the image can be seen as a mapping from the spatial
domain to the range of the imaging sensor. Let r refer to the spatial coordinates in the
cartesian plane, then the image I : S → P is a mapping from the scene to the pixel domain
such that each r ∈ S is mapped to I(r) ∈ P.

In the case of color imaging, for every point r in the two-dimensional space, we obtain three
values per pixel, namely the red, green and blue values (in intensity). Hence, the resulting
image can be represented as the following function that maps a vector to a vector,

r ∈ R2 → I(r) =



Red(r)
Green(r)
Blue(r)


∈ R3.

In contrast, when working with monochromatic images, we have a simpler mapping of the
form r ∈ R2 → I(r) ∈ R.

In order to store the data defined by I(r) on a computer, it needs to be processed in two
stages: sampling and quantization. The luminance values, given by the values of I(r), are
always positive and belong to a restricted interval.

In order to be stored or processed by digital devices, the luminance value is mapped to a set
of finite values, typically {0,1, · · · ,255}, which is also known as quantization. In the case
of coloured images, each colour is mapped to one of the 256 possible values. In the case of
monochromatic images, some sensors employ a higher resolution, with values encoded in
12 bits, i.e., in the range {0,1, · · · ,4095}. The choice of the resolution is dependent on two
factors: the images captured and the processing to be performed. For example, computed
tomography (CT) images use more than 10 bits, while a low grade webcam around 6 per
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colour. More complex processing, such as gradient calculations, also require a higher
resolution for good results.

Quantization guarantees an image luminance can only take one of a finite number of
possible values. However, the image has an infinite number of points. Therefore we
need to sample the values of the images along each axis and define a new sampled image
Is(i, j) = I(i∆x, j∆y), where ri, j = (i∆x, j∆y) denotes the sampled spatial coordinates,
and ∆x and ∆y denote the sampling distances along x and y, respectively. Here, Is(i, j)
represents a pixel, which is the picture element. It is important to point out that the pixel is
a point sample taken from the image, and is not a small square of measurable dimensions
as is the common misconception. When the image is 3D instead of 2D, then the pixel is
called a voxel, which are point samples in a 3D space.

2.2.3 Image Interpolation
After the continuous image was sampled and quantized, it is important that we can compute
the values of the original continuous image at any desired coordinates. The process of
computing the value of I (x, y) at locations different from the sampling points is called
interpolation. One may ask, can the interpolation work for any choice of the sampling
distances ∆x and ∆y? It turns out that the maximum sampling distances are a function
of the image bandwidth, and the values represent an extension of the Shannon sampling
theory, originally introduced for time samples. For now, we will assume the sampling
distances ∆x and ∆y are small enough such that the samples are a good representation of
the image. The luminance function I (x, y) is sampled along a two dimensional space. Let
us first look at some examples for interpolating one dimensional functions g(x) using the
sampled function gS(k) = g(k). Notice that for simplicity we use a sampling interval of 1.

Nearest neighbour interpolation: As the name suggests, this method selects the sample
value located at the nearest sampling location, without calculating a new value. This is
a very computationally inexpensive interpolation method, but doesn’t always generate
useful results in practice. The values of the new samples are computed as ĝ(x) =
gS

( [
x + 1

2
] )
, where [ ] denotes the round function, and

[
x + 1

2
]
denotes the integer

closest to x. The function ĝ(x) is depicted in Fig. 2.19 for g(x) = sin(x). You can notice
how the function closely resembles g(x) at the sample points, and is very different from
g(x) in between the sampling points.

Linear interpolation: This is a slightly more complex interpolation with improved results.
If for nearest neighbors we needed one sample, here we use two samples to calculate
the interpolation at a new location. The expression of the interpolated function in this
case is

ĝ(x) = (1 − (x − k)) · gS(k) + (x − k) · gS(k + 1), x ∈ [k, k + 1] .
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Figure 2.19: The Nearest Neighbour Interpolation. The original continuous function
g(x) = sin(x) (dashed line) and the interpolation ĝ(x) (solid line).

The interpolated function ĝ(x) is, in this case, continuous in the mathematical sense,
i.e., it contains no jumps. However, it is not differentiable in the sampling points.

Higher order interpolation: The nearest neighbor and linear interpolations can be in-
creased in complexity. Each of the two methods are essentially fitting a polynomial of
degree 0 (nearest neighbor) and 1 (linear) to a number of samples, and the new sample
value is computed as the fitted polynomial evaluated in the new sample location of
interest. For example cubic interpolation refers to fitting polynomials of degree 3 of the
form

ĝ(x) = c1x3 + c2x2 + c3x + c4, x ∈ [k, k + 1] .
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Figure 2.20: The Linear Interpolation. The original continuous function g(x) = sin(x)
(dashed line) and the interpolation ĝ(x) (solid line).

The values of the coefficients c1, c2, c3, c4 can be computed analytically from the known
samples

c1 =
1
6
(−gS(k − 1) + 3gS(k) − 3gS(k + 1) + gS(k + 2)) ,

c2 =
1
2
(−gS(k − 1) − 2gS(k) + gS(k + 1)) ,

c3 =
1
6
(−2gS(k − 1) − 3gS(k) + 6gS(k + 1) − gS(k + 2)) ,

c4 = gS(k).

Clearly, this is a more complex interpolation, but it leads to very good results, depicted
in Fig. 2.21.

Image 2D interpolation: Once the 1D interpolation is understood, generalising to 2D is
straightforward. Specifically, it is made up of two components: interpolating in the x
direction, and in the y direction. For linear interpolation, the linear interpolation of an
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Figure 2.21: The Cubic Interpolation. The original continuous function g(x) = sin(x)
(dashed line) and the interpolation ĝ(x) (solid line).

image at points x, y, denoted as Î(x, y), is computed as

Î(x, y) = (1 − (x − i))(1 − (y − j))IS(i, j)
+ (1 − (x − i))(y − j)IS(i, j + 1)
+ (x − i)(1 − (y − j))IS(i + 1, j)
+ (x − i)(y − j)IS(i + 1, j + 1),

where x ∈ [i, i + 1] and y ∈ [ j, j + 1] are the coordinates of the interpolation point. An
example of a 2D linear interpolation is depicted in Fig. 2.22.

Let us now see what happens to a real image during the process of sampling. To enhance
the effect on high frequencies, we start with a checkerboard pattern with a tilted view,
as shown in Fig. 2.23.

The image high spatial frequencies are mostly located at the top, where the squares
are smaller and closer together. You can see that simply downsampling the image,
in this case by discarding one out of two pixels on both spatial dimensions, leads to
distortions in the top part with high frequencies. These distortions, called aliasing,
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Figure 2.22: The Linear 2D Interpolation. The original samples IS(i, j) (black dots) and
the interpolation Î(x, y) (gray mesh). Here, the samples were taken from the function

I(x, y) =
sin

(√
x2+y2

)
√

x2+y2
.

Figure 2.23: Image Downsampling without Filtering. The original image (left) is down-
sampled by a factor of two (right). The aliasing effect can be viewed particularly for the
high spatial frequencies at the top of the image.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

2.2 Image Sensors 37

Figure 2.24: Image Filtering in the Frequency Domain. The Fourier transform of the
original image and of the image filtered with a boxcar function.

are explained theoretically by Shannon’s Nyquist rate formula, which states that the
sampling frequency fs should satisfy

fs � 2 fMAX,

where fMAX is themaximum frequency in the signal, and 2 fMAX is known as the Nyquist
rate (3.2.1). Therefore, to get good results after sampling an image, we can filter it. In
Fig. 2.24 you can see the Fourier transform of the original image F [I(ω1,ω2)] and that
of the image filtered with a boxcar function F

[
I f (ω1,ω2)

]
. The original image has

frequency components near the edge of the frequency domain. A downsampled image
has a reduced frequency domain, and therefore we need to remove the high frequencies
up to half of the maximum frequency in the signal via filtering to satisfy Shannon’s
Nyquist rate condition. On the right-hand side of Fig. 2.24 we see that the filtered
spectrum is still surrounded by four small lobes. This is because the boxcar function is
not an ideal low-pass filter, and its Fourier transform is a cardinal sine function.

If we perform downsampling on this new filtered image, we notice the aliasing effect is
barely visible, as depicted in Fig. 2.25.
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Figure 2.25: Image Downsampling with Filtering. The original image is filtered with a
boxcar function (left) and subsequently downsampled by a factor of two (right).
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Figure 2.26: The Main Steps in the Digital Imaging Pipeline. Reprinted from Ramanath
et al. (2005).

2.2.4 Digital Imaging Pipeline
The transformation stages from the light rays reflected by the scene to the final image files
on our computers is called the digital imaging pipeline. It consists of a few major stages,
depicted in Fig. 2.26.
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Figure 2.27: The Basic Components of a CMOS Camera Sensor.

First, the light reflected by the scene is manipulated using the optical parameters, such
as aperture and exposure time, which bend the light and direct it towards the sensor. The
sensors have evolved a lot during the centuries, and nowadays there are twomain categories:
charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS).
The CCD is based on a MOS capacitor, and is mainly used in high-end cameras due to its
high price and power consumption. The CMOS is based on MOSFET transistors, and is a
lot more consumer friendly, with a lower power consumption and a more affordable price.
It is more prone to noise, but this can be partly tackled with digital denoising. Therefore
we will focus on CMOS sensors for this presentation.

The CMOS sensor itself is equipped with a microlens for each pixel, which has the effect
of increasing the amount of light captured by that pixel. The light then passes through a
colour filter, which extracts the wavelengths relevant for each of the red, green and blue
colours. Then, the filtered light hits the photodiode which generates electrons in response.
Those electrons are then stored in the potential well. The diagram of a sensor is depicted
in Fig. 2.27. Only 3 pixels are displayed for simplicity. The sensitivity of each colour filter
to each wavelength are depicted in Fig. 2.28.

In a full commercial sensor, the colour filters are not uniformly distributed. They follow a
specific pattern, called the colour filter array, which determines the final look of the image.
One of the very common colour filter arrays is the Bayer filter, which contains 50% green
filters, 25% blue and 25% red. This is inspired by the fact that the human retina uses cone
cells during day time, which are most sensitive to green light. The image generated by the
sensor is therefore called a mosaiced image, due to the mix of different colour pixels.
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Figure 2.28: Spectral Sensitivities in Digital Colour Cameras. Reprinted from Ramanath
et al. (2005).









 







Figure 2.29: The Analog Front End in the Digital Processing Pipeline.

The potential well of each pixel generates an analog voltage signal that enters the prepro-
cessing pipeline, consisting of several stages. First, the voltage is processed with the analog
front-end, depicted in Fig. 2.29. This converts the analog mosaiced image from the sensor
outputs into the raw digital mosaiced image. First, the analog voltage is passed through an
amplifier, whose gain is modulated by the ISO settings of the camera. The gain is larger
for pixels farther from the image center, due to the vignetting effect, which darkens the
extremities of an image. Second, the analog-to-digital (ADC) converter generates a digital
signal, usually with sizes of 10-16 bits. Third, the sensor suffers from nonlinearities in the
extremities of its range (very bright or very dark pixels), which is corrected using a look-up
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table. A look-up table simply maps an output value to any possible input value, and is a very
fast technique to process digital signals. Gruev and Etienne-Cummings (2002) implement
a pseudogeneral image processor chip that enables steerable spatial and temporal filters at
the focal-plane.

The output image of the analog front-end is called the raw image. Many consumer grade
cameras allow access to this format, because many applications, such as physics based
computer vision, work much better on raw images than processed ones. However, they do
not look very appealing due to a high level of noise, and unsuitable colour balancing.

The next processing stage adjusts the white balance of the raw digital images. This is
necessary because what a person sees as white has a lot to do with the perception of the
scene. Therefore, the white balance is adjusted by imposing an assumption on the image
colouring. One way to do it is assuming that the average colour of an image is gray, called
gray world assumption. A different method, called white world assumption, assumes the
brightest object in the scene to be white. However, modern cameras use histogram based
algorithms, assuming specific proportions of various colours.

Next, recall that at this stage the image is still a mosaic of colours, meaning that each pixel
stores colour specific information. We need to turn this mosaiced image into three images,
corresponding to the colours red, green and blue. However, the red and green information
is lost at the location of a blue pixel. So how can this information be recovered? This can
be done by interpolation, and even simple algorithms averaging the nearest neighbors can
achieve good results. The three images at this stage are still strongly affected by noise.
Therefore, typically a denoising stage is applied, such as averaging or computing themedian
of the neighboring pixels.

The psychologically human perceived colours are mapped to light wavelengths using colour
spaces. They allow a reproducible representation of colour. These mappings are denoted
in the diagram as colour transformations. Examples of such colour spaces are CIEXYZ
and ISO-RGB Ramanath et al. (2005).

After all these steps, the image still does not look natural. That is because light detection in
the human retina is nonlinear as a function of the luminance, more sensitive to dark tones,
while for a camera, this relationship is linear. To address this, a subsequent post processing
step is employed. Because the nonlinear function in the case of the human eye resembles
the mathematical function gamma, the process that compensates for this effect is called
gamma correction. After this step, the image appearance to the human eye is significantly
improved, but it still takes a lot of space. This motivates the final step, called compression,
which decreases the image size by a third. The final result is an appealing image in a
compressed format, such as a jpeg or png.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

42 Chapter 2 Imaging Toolkit

2.3 Illumination

The use of lighting is something that has not evolved a great deal since the beginnings
of photography. It can be argued that it is the main thing that distinguishes an amateur
photographer from a professional. A professional photographer measures the light intensity
and then selects manually the right camera parameters such as ISO sensitivity, exposure
time, aperture. In automated cameras these parameters are selected automatically, however
this choice does not always lead to the most pleasing picture.

Similar to ISO or exposure time, there are a few parameters that can be adjusted for the
camera lighting:

• duration and intensity

• presence or absence of auxiliary lighting

• color, wavelength, polarization

• position and orientation

• modulation in space and time

Each of the parameters above will be discussed separately below.

2.3.1 Duration and Intensity
Capturing fast moving objects is possible using high shutter speeds. Even so, these are
quite limited given that they involve moving mechanical parts.

This means that we won’t be able to capture certain physical phenomena in this way. An
alternative is to use fast bursting flashes of light with electronic devices called strobes.

An iconic example is the “Bullet through Apple” image captured by MIT Professor, Harold
Edgerton.

This is one of the examples of a technique called strobe photography, developed in the
1930s, which uses light and sound to trigger the flash burst with precise timing. A natural
continuation of strobe photography was high frame rate film. By combining the short light
bursts of strobes with the high sensitivity of CCD and CMOS sensors developed in the
1980s, the manufacturers developed cameras with ultra-short exposures. This technology
today evolved to the point where affordable cameras reach up to 300 frames per second at
a 0.2 MB resolution, and high end cameras reach 2,570 frames per second at Full HD (2
MB) resolution.

A different way to exploit the capabilities of strobe photography is to generate several bursts
in one camera exposure, called sequential multiflash stroboscopy. Typically this is done
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with a dark background, and the bursting frequency and duration is set so that the different
frames of the object in motion do not overlap.

2.3.2 Auxiliary Lighting
The flash illumination is currently in built in most of today’s cameras. By adjusting the
illumination when capturing images, it is possible to extract various features. In Dicarlo
et al. (2001) the authors recovered the object reflectivity using two snapshots with ambient
lighting and flash, respectively. Taking photos with flash with various intensities makes it
possible to simulate images captured with a continuous level of flash Hoppe and Toyama
(2003).

The use of flash is clearly necessary when the ambient lighting is low. However, if there
is relatively enough ambient light, is it recommended to use flash? Flash photographs
are known to lead to images with clear high-frequency details, and also with more noise
robustness. However, ambient light is part of the scene, and we may want to capture it.
Moreover, flash photographs look rather unnatural due to the artificial lighting. It is possible
to combine a flash photograph with one captured with ambient light to achieve the advan-
tages of both methodologies Petschnigg et al. (2004); Raskar et al. (2004). Specifically,
the methods generate a new image incorporating the details separated from the flash photo
and shadows from the ambient light photo. The separation is performed using an imaging
processing technique called joint bilateral filter.

Similarly, a bilateral filter can be used to simply denoise the image captured without flash
Tomasi and Manduchi (1998). Typically when an image is filtered, the details are removed
together with the noise. When using a bilateral filter, an intensity similarity measure cancels
out the filter effect in areas where there are image details, quantified as high frequencies
in the flash image. This technique is prone to errors and artefacts when the flash image
contains shadows - which would be interpreted as details by the bilateral filter, or when
it is overexposed - which means that the details would be dimmed or removed altogether.
This would cause the bilateral filter to remove details from the ambient image, or to leave
unfiltered areas with no detail.

As mentioned before, the bilateral filter method fails when the flash saturates portions of
the image. Similarly, as sensors have predefined dynamic ranges, the flash might lead to
colors too bright to be captured. In a different scenario, objects could be located at different
distances from the flash, and therefore a low intensity would not illuminate the far away
objects, and a high intensity would saturate or “blow out” the close-by points in the scene.
The solution is, as in the case of the ambiental light image, to combine the beneficial
characteristics of several images into one high quality image. In this case the authors in
Raskar et al. (2008) combine images captured with various flash intensities to generate a
single high dynamic range (HDR) image.
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Figure 2.30: Removing Artefacts from a Flash Image. The image gradients are used to
locate the image artefact and remove it. Subsequently, the isolated artefact can be integrated
to generate an image of the photographer. Reprinted from Agrawal et al. (2005).

Another way to address the artefacts in flash images is to compute the gradient vector for
the flash and ambient light image Raskar et al. (2008). The gradient vector in a pixel is
the direction in which the intensity change is most abrupt. Therefore it is intuitive that
the gradient at an edge is perpendicular on the edge for all pixels close to it. Using this
observation, an artefact is located at pixels where there is significant difference in gradient
vector orientation between the ambient light and flash image. This technique is called
“gradient coherence” Raskar et al. (2008).

An interesting research question is if an image can be reconstructed from its generated
gradient vectors. The gradient is typically implemented as a difference

∆I (x, y) = [I (x + 1, y) − I (x, y) , I (x, y + 1) − I (x, y)] .

Therefore the problem of reconstructing I seems trivial, i.e., recovering through the cu-
mulative summation of ∆I (x, y). However, complications arise when the gradient is not
consistent, meaning that the result is dependent on the path along which summation is
done. There have been several methods addressing this issue Agrawal et al. (2006). In
Agrawal et al. (2005), the authors use gradient vector projection to combine an ambient
and flash image into a high quality image with ambiental features Fig. 2.30. Interestingly,
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Figure 2.31: Generating Synthetic Colored Lighting using Conventional Illumination.
An image is captured using ambiental light, and subsequently with lighting from the left
direction (left) and right (middle). By subtracting the images with artificial lighting from
the ambiental image it is possible to generate synthetic colored lighting (right). Reprinted
from Haeberli (1992).

the residuals from the flash image gradients can be integrated to recover an image of the
photographer, not visible in the original flash image.

2.3.3 Modifying Color, Wavelength and Polarization
So far we looked at white illumination with varying intensity to achieve desired image char-
acteristics. By choosing a flash containing specific colors allows performing programmable
color manipulations on images. For example, two colors can look the same 8.2.3 or different
depending on the type of lighting during capture, which could be alleviated by modulating
the illumination wavelength (8.3.4).

This is also used in fluorescence photography, which exploits the fact that fluorescent
surfaces emit low frequency light in response to high frequency illumination. In this case,
the light source emits ultraviolet light, and the camera filters out non-visible light, thus
capturing only the reflection of fluorescent surfaces.

Colored lighting can be simulated using photographs captured with conventional lighting.
In Haeberli (1992), the authors use two lamps with white light on each side of the subject,
and capture three photographs: one with ambient lighting, and two with lighting from
each direction. By subtracting the ambient light image from the other two, it is possible
to quantify the contribution of each lamp. Then, through software manipulation, they
simulated an image where each light source has a different wavelength Fig. 2.31.

2.3.4 Modifying Position and Orientation
If we can alter the illumination of a scene, we can reveal different surface details otherwise
hidden from view (4.3). One example is locating shape discontinuities, which are depth
differences between various patches of the scene. This connects closelywith edge detection,
since edges in an image are largely the cause of shape discontinuities.
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In Raskar et al. (2004) it was shown how to use multiple flashes to find silhouettes using
depth discontinuities, which are the points where depth values change. Depth disconti-
nuities, or edges, are identified via the shadow narrow strip, or sliver cast in the opposite
direction of the lighting. Additionally, the technique can be used to generate shadow-free
images.

The weak point of the method above is that it does not accommodate small objects, or
backgrounds that are far away. These lead to shadows that are detached from the subject.
The method can be extended, however, to video footage, by using a high-speed flash
sequence Raskar et al. (2004); Taguchi (2014). This principle was also used to decode sign
language input Feris et al. (2004).

Generating synthetic lighting in images post capture was also proven useful to generate
a painting interface for novices in photographic lighting design Anrys and Dutré (2004);
Mohan et al. (2005). This allowed them to see the results after changing locally the lighting
in images, which is much more convenient than retaking the photograph with a different
lighting each time.

If the image has only one lighting source, then the pixel brightness is linear with the
intensity of that lighting. Assuming that the camera has a linear response, then the effect of
more powerful lighting can be achieved simply by increasing the resulting pixel brightness
Nimeroff et al. (1995); Haeberli (1992). If there are several light sources present, the final
intensity is computed as a weighted sum of the corresponding intensities of each light
source.

For maximum flexibility, ideally one should have access to photographs taken from any
possible position. However this is not possible when the lighting equipment is constrained
inside a predefined area, i.e., inside a square. In a general framework, a scene is described
by two 4D functions, known as light fields:

• the incident light field Li(u, v, α, β) describing the irradiance of light incident on objects
in space.

• the radiant light field Lr (u, v, α, β) quantifying the irradiance created by an object.

This model was extended to define the 8D reflectance field, which measures irradiance at
the sensor determined by incident light rays displayed by an arbitrary projector in space
Debevec et al. (2000). If we fix the viewpoint, the reflectance field can be reduced to 6D.
Even so, capturing and storing data of this high dimensionality creates problems in practical
scenarios. The projector was also mounted on a robotic arm to acquire the reflectance field
of a human face Debevec et al. (2000). This can be viewed as a pixel translated over the
surface of a sphere, leading to a dimensionality reduction of the incident light field, and
therefore a reduced final 4D reflectance field.
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By controlling the color and intensity of light from various positions around the subject, it
is possible to then integrate seamlessly the image of the subject into a new scene Debevec
(2002). The reduction in size of the 4D reflectance field is very desirable in practice. To
this end, in Malzbender et al. (2001) the authors observed that, when changing the lighting
incident angle, the color of a pixel changes with a function that can be closely approximated
with a biquadratic polynomial. This allowed them to only store the coefficients of the
polynomial and subsequently use compressive sensing to greatly reduce the size of the
reflectance field. However, as one may expect, specular reflections, which only happen for
certain angles of the incident illumination, cause disturbances in the biquadratic polynomial
approximation, which remains an open problem in the field.

A 6D reflectance field is a better description of the scene. Even though the number
of illumination setups is theoretically equal to the number of pixels in each projector
multiplied by the number of projectors n, it was shown that it can be simplified significantly
by illuminating the scene with a single projector moving in n positions Masselus et al.
(2003).

2.3.5 Modifying Space and Time
In order to control the radiance of each ray emitted, one can use projector-like light sources,
which allow controlling each individual pixel, and not just the overall brightness. It was
shown that using such a light source to assist capturing images with a camera allows
extracting scene information that would be impossible to access using regular flash Nayar
et al. (2006). The projector-like device, which is called “CamPro”, is still rather bulky
to fully replace the traditional flash, but it could be promising in the future if it could be
implemented with smart lasers.

Clearly an important task is recovering the 3D shape of a scene from 2D images. It turns
out that the problem of recovering the 3D location of an object is in close connection with
the correspondence problem of pixels in images with different views. This latter problem
requires finding a correspondence between sets of points in each image, captured from a
different angle, that matches the points in the 3D scene. The correspondence problem can
be solved by using a projector with temporal multiplexing: projecting a certain pattern at a
time that can be identified by cameras recording different perspectives.

Once the correspondence problem is solved, the 3D location is recovered via triangulation
between camera and projector. This can work with only a camera and a projector, as
depicted in Fig. 2.32.

This problem is similar to the problem of stereo triangulation, where a set of 3D points
in the scene are identified given the disparity map between the images captured from 2
or more viewing angles. In our case, instead of two passive cameras we have an active
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Projector 
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Scene object 

Figure 2.32: 3DObject Localization and the Correspondence Problem for a Single Camera
and a Projector. Several patterns are projected onto the scene object, which are detected by
a single camera. The object 3D localization is computed via triangulation.

camera and a projector encoding the space via illumination, in a process called active
stereo triangulation. For readers piqued by stereo imaging, we discuss some examples
where epipolar geometry is used in Time-of-Flight imaging for sequential acquisition of
strips of the image scene in 10.5.1.

The number of patterns generated by the projector can be reduced by coding the boundaries
between the projected shapes Rusinkiewicz et al. (2002). The projected light can also have
a binary pattern, where the pixels can either be turned off, or have a fixed level of brightness
Posdamer and Altschuler (1982).

The projector can be modulated in space, such that at a given time it is illuminating
differently the points in the scene, or in time, meaning that the pattern changes in successive
frames. The two modulations can also be used in conjunction.

As we briefly mentioned in Subsection 2.1.7, a programmable flash can be used to separate
the light scattered by the scene in two components:

1. The direct illumination, caused by the light source, which enhances the material prop-
erties at a given point,
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2. The global illumination, determined by other points in the scene, which reveals the
optical properties of the objects, i.e., indicating how a certain patch in the scene is
illuminated by the scene itself.

One way to separate the two components was proposed in Nayar et al. (2006), where the
projector was spatially encoded with a checkerboard binary pattern. This means that the
scene was divided in square patches that are lit and unlit intermittently by the projector. The
technique is based on the main observation that, if one uses a high-frequency checkerboard
pattern, the patches left unlit contain only global illumination components (light reflected
from the lit patches). On the other hand, the lit patches contain both global and direct
illumination components.

This means that, theoretically, it is enough to capture two frames: one illuminated with
the checkerboard pattern and one with its complement illumination pattern. This ensures
covering the whole scene and is enough to recover each illumination component. However
due to the common leakage effect in off-the-shelf projectors, it is necessary to capture 5
times more images to compensate for this imperfection Nayar et al. (2006). The global
and direct illumination merely separates between one and several bounces of the lighting
emitted by a projector. It is possible to go one step further, and model the individual
bounces of an optical ray Seitz et al. (2005).

Apart from modulation in space, the projector can be modulated in time, by using high-
frequency strobes to acquire snapshots of the scene periodically, in a predefined pattern. An
interesting effect in this case is that the illumination frequency is different from the frequency
of a periodic movement in the scene. In this case the captured images are characterized by
a perceived frequency, which is the difference between the two frequencies.

Consequently, if the two frequencies are the same, the captured footage will show the scene
object stagnating. This is very useful in applications such as distortion detection in vocal
cords. By illuminating the cords with predefined frequencies, a physician can tell if there
is a physiological distortion in the cord movement.

Chapter Appendix: Notations

Notation Description

c Speed of light through vacuum

ν Frequency

λ Wavelength

E Energy

h Planck’s constant



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

50 Chapter 2 Imaging Toolkit

Φ Radiant flux

R Irradiance

M Exitance

Ω Solid angle

I Radiant intensity

L Radiance

d Distance between the pinhole and the projection plane

α Skew factor

δ Aperture size

n1, n2 Indices of refraction

θ1, θ2 Angle of incidence and angle of refraction

f Focal length

D Aperture diameter

N Lens speed, f-number

R Average irradiance

1/f Focusing power of the lens

fc Focal length of the compound lens

r Ratio of reflected light intensity

I (x, y) Light signal

ζ (x, y) Gaussian noise of zero mean and standard deviation 1

σ (I (x, y)) Signal dependent standard deviation

z (x, y) Sensor measurements at pixel (x, y)
P (r) Poisson distribution

I Image

Is Sampled image

fMAX Maximum frequency in the signal

F Fourier transform operator

I f Filtered image
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Exercises

1. Light Ray Bending

a) Snell’s Law

 𝜃ଶ 𝑛ଶ 

Light ray 
source 

Smooth boundary 
between materials 

Light ray 

𝑛ଵ 𝜃ଵ 

Figure 2.1: Modelling the Principle of Refraction via Snell’s Law.

Assume a light ray passes the smooth boundary between air andwater with an incident
angle θ1 = π

6 . Calculate θ2 to two decimal places knowing that the refraction index
for air is n1 � 1 and for water n2 � 1.33.

b) Thin Lens

Figure 2.2: The Proposed Thin Lens Setup.

Consider the thin lens setup in Fig. 2.2. An object is located on the lens optical axis
such that its reflected light rays that pass through the lens aperture cover an angle α1.
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The object is in focus, and is projected on the sensor plane at a point where the field
of view is given by angle α2. Assuming that the aperture diameter d is known, derive
analytically the expressions of lens focal length f and the distances from the lens to
the object S1 and to the sensor plane S2.

2. Capturing Images via Sampling and Quantization

a) Image Sampling
When an image is captured by a digital camera, it is sampled spatially by the sensor
array, and then each pixel value is coded with a number of bits in a process called
quantization.

Let us simulate this process by starting with a high-resolution grayscale image, with
size around 2000 × 2000, as in Fig. 2.3 (a).

For demonstration purposes, let us assume we have a sensor array with size 80 × 80
that captures the image.

To simulate the spatial sampling process, we need to divide the original image pixels
in 80× 80 blocks, and then average out the pixels in each block, just as a sensor pixel
would average all incident light intensities. This should lead to an image similar to
the one in Fig. 2.3 (b). Please plot a result using your own image.

What is a quick procedure to sample the image in the described way? (hint: it may
involve convolving with a kernel)

b) Image Quantization
Next, the captured pixel values need to be quantized. Of course, in your image
they already are quantized (most probably in the range 0 − 255), but here we will
implement a course quantization thatwould enable a good visualization of the process.
For example, a 4-bit quantization would involve mapping each pixel in an image to a
value in {0,1, . . . ,15}. Is there a quick way to implement quantization without loops?

Generate your own images after 4-bit and 3-bit quantization. The results should look
similar to the ones in Fig. 2.3 (c,d).

c) Image Interpolation
Subsequent processing tasks could require a higher resolution image. How could the
new pixel values be computed? The most straightforward way is applying interpola-
tion, as in Fig. 2.4 (a). The distortion of the image due to quantization is still present
though, but it can be addressed via filtering (Fig. 2.4 (b)).
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(a) Grayscale Image of Jupiter. (b) The Image Captured by a 80 × 80
Sensor Array.

(c) 4-bit Quantization. (d) 3-bit Quantization.

Figure 2.3: Simulating the Sampling and Quantization Done by a Sensor Array.

Now apply these steps to your quantized image too, increasing the resolution to match
the original image. Then filter the high-resolution quantized image with a 2×2matrix
of ones. The results should be similar to Fig. 2.4.

What differences do you notice between the aspect of the low-resolution and high-
resolution quantized image? What drawback do you see in filtering? What do you
imagine that would happen if the filtering is repeated a large number of times?
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(a) Interpolation of a 3-bit Quantized
Image.

(b) Interpolation and Filtering of a 3-bit
Quantized Image.

Figure 2.4: Increasing the Resolution of a Sampled and Quantized Image via Interpolation.

Let I (x, y) denote a continuous image, and let IS (k, l) denote the samples taken with
period 1. Demonstrate that the linear interpolation of I (x, y) at samples IS (k, l) is
given by

Î(x, y) = (1 − (x − k)) (1 − (y − l)) IS (k, l) + (1 − (x − k)) (y − l) IS (k, l + 1)
+ (x − k) (1 − (y − l)) IS (k + 1, l) + (x − k) (y − l) IS (k + 1, l + 1) .

d) Brightness and Contrast Adjustment
In this examplewewill understand the concepts of brightness and contrast bymanually
adjusting them for a chosen image. The image pixels with adjusted contrast and
brightness are defined by

Ĩ (k, l) = B · I (k, l)C ,

where B,C ∈ R denote the brightness and contrast adjustments, respectively. Now
choose a color image and change its brightness and contrast to enhance its features,
as in Fig. 2.5.

What is the drawback that prevents capturing an image with arbitrary high sharpness
with a pinhole camera? How is generally the brightness of pinhole camera photos,
and what trade-off is involved when attempting to adjust it? Can we say that a
pinspeck camera solved the brightness problem of the captured images?
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(a) Original Image. (b) Image with Adjusted Brightness and
Contrast.

Figure 2.5: The Adjustment of Brightness and Contrast in digital images.

3. Image Deconvolution

a) Problem Setup
Under LSI conditions, deblurring can be posed as follows:

J (k, l) = h (k, l) ∗ I (k, l) + e (k, l) , (2.1)

where J (k, l) is the observed image, I (k, l) is the original image, h (k, l) is the kernel,
and e (k, l) is the noise.
To recover the original image, we usually apply deconvolution algorithms to the
observations. In this exercise, we will implement several deconvolution algorithms
and compare their performances. To evaluate the performance quantitatively, we will
adopt two image similarity metrics: (1) peak signal-to-noise ratio (PSNR), and (2)
structural similarity (SSIM) index.

The PSNR between two images, I1 (k, l) and I2 (k, l), can be calculated as follows:

PSNR (I1, I2) = 10 log10

(
R2

MSE (I1, I2)

)

MSE (I1, I2) =
1

KL

K−1∑
k=0

L−1∑
l=0

[I1 (k, l) − I2 (k, l)]2 ,
(2.2)

where R is the data range of the images, and (K , L) is the image size.
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The SSIM between I1 (k, l) and I2 (k, l) is calculated based on three measurements,
including luminance (L ), contrast (C ), and structure (S ):

SSIM (I1, I2) = [l (I1, I2)]α · [c (I1, I2)]β · [s (I1, I2)]γ

L (I1, I2) =
2µI1 µI2 + C1

µ2
I1
+ µ2

I2
+ C1

C (I1, I2) =
2σI1σI2 + C2

σ2
I1
+ σ2

I2
+ C2

S (I1, I2) =
σI1I2 + C3

σI1σI2 + C3
,

(2.3)

where α, β, and γ are the weights for the three measurements, µI1 , µI2 , σI1 , σI2 , and
σI1I2 are the local means, standard deviations, and correlation coefficient for images
I1 (k, l) and I2 (k, l), and C1, C2, and C3 are three variables to stabilize the division.

You can refer to PSNR and SSIM functions in the scikit-image package1 for more
details. Make sure you have changed the corresponding parameters of the SSIM func-
tion in scikit-image to match the implementation of Wang et al. (2004). Remember
to normalize the images before reporting the PSNR and SSIM scores.

b) Image Preparation
To test the performance of different deconvolution algorithms, we need to generate a
blurry image using a known blur kernel. Here are the procedures:

1. Pick an image from the BSDS500 dataset2, and convert it to gray scale. Crop a 256×256
region from the selected image. Denote this image as I (k, l).

2. Perform 2D convolution (with zero padding) on the cropped image using an identity
matrix of size 21 as the kernel, h (k, l). Remember to normalize the kernel to make sure
that it sums up to one before convolution. Denote the obtained image as Inoiseless (k, l).

3. Calculate the standard deviation of I (k, l) and add Guassian noise with zero mean and
standard deviation of 0.01 · STD (I (k, l)) to Inoiseless (k, l). Denote the noisy image as
Inoisy (k, l).

i. Blurry Image
Plot I (k, l), Inoiseless (k, l) and Inoisy (k, l). What are the sizes of Inoiseless (k, l) and
Inoisy (k, l)?

ii. Metric Baseline
Briefly describe the differences between PSNR metric and SSIM metric. Report

1 https://scikit-image.org/docs/dev/api/skimage.metrics.html

2 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

https://scikit-image.org/docs/dev/api/skimage.metrics.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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PSNR(I, Inoiseless), SSIM(I, Inoiseless), PSNR(I, Inoisy), and SSIM(I, Inoisy). You
can crop the center 256 × 256 regions from Inoiseless (k, l) and Inoisy (k, l) when
calculating PSNR and SSIM.

c) Naive Deconvolution
Implement a function to conduct naive deconvolution, and provide your codes in the
box below. The function should take the blurry observation, J (k, l), and the blur
kernel, h (k, l), as the input parameters, and return the recovered image, Î (k, l). The
discrete Fourier transform functions in NumPy3 might be useful.

i. Naive Deconvolution Algorithm
Apply your naive deconvolution algorithm to both Inoiseless (k, l) and Inoisy (k, l).
Plot the recovered images, and report their PSNR and SSIM scores with I (k, l).
Remember to crop the boundaries of the recovered images.

ii. Naive Deconvolution Results
Why the outputs of the above two cases are different? You need to derive the
Fourier transform of the recovered images for this question.

iii.Naive Deconvolution Analysis
Express the recovered image from Wiener deconvolution in frequency domain,
and implement your own Wiener filter function based on it.

d) Wiener Filter

i. Wiener Filter Algorithm
Express the recovered image from Wiener deconvolution in frequency domain,
and implement your own Wiener filter function based on it.

ii. Ideal Wiener Filter Results
Apply your Wiener filter to Inoisy (k, l). Plot your recovered image, and report its
PSNRandSSIMscores. You can use the actual frequency-dependent SNR (ω1,ω2)
in this question.

iii.Power Spectral Density
Normally, we do not have access to the frequency-dependent SNR (ω1,ω2) in
real applications. Therefore, people usually approximate the SNR (ω1,ω2) from a
predefined function. To explore how to estimate SNR (ω1,ω2), let’s first analyze
the power spectrum of noise and real images. Plot the power spectral density of

3 https://docs.scipy.org/doc/numpy/reference/routines.fft.html

https://docs.scipy.org/doc/numpy/reference/routines.fft.html
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I (k, l) and your added noise e (k, l) in log scale4. Pick two other images with
different scenes in the BSDS500 dataset, and plot these two images together with
their log-scale spectral density.

iv. SNR Approximation

4Remember to shift the zero-frequency component to the center of the spectrum by using “fftshift" in NumPy.
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Based on the above plots, describe the features of real images and noise. Which
function would you use to approximate SNR in this case?

v. Approximation Results
Plot the deconvolution result using the above SNR approximation, and report your
PSNR and SSIM scores.
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Distinct from the conventional notion of imaging, the area of computational imaging heavily
relies on mathematical tools and techniques that facilitate the required “computation” for
recovery of image from measurements. In this way, computational imaging draws on
available wealth of knowledge from the areas of signal processing, optimization theory and
inverse problems. The purpose of this chapter is to combine known and recent tools from
these areas in a holistic fashion. The contents of this chapter are organized as follows. We
start with a brief introduction to inverse problems. Then, we recall basic tools and ideas from
signal processing and linear algebra, that help us develop mathematical models for imaging
problems. For solving inverse problems, we rely on (a) model-based computational and
numerical methods and (b) data-driven methods inspired by advances in machine learning
literature. As we will see in the chapters to follow, these tools will be used as mathematical
algorithms in standalone configuration or as a combination of tools for image recovery.

3.1 Modeling: Forward vs. Inverse Problems

An end-to-end computational imaging system operates in two stages. The first stage that
describes an image formation model. This is the stage that is concerned with the interaction
of a physical entity with hardware. When this interaction is written in mathematical terms,
this is known as the forward model. The forward model is a mathematical description of
the hardware. Said differently, the measurements arising from a computational imaging
system can be abstractly related to the output of the forward model. There on, the task of
recovering the underlying physical phenomenon from themeasurements is accomplished by
solving the inverse problem. This solution is typically composed of a series of mathematical
steps and the resulting procedure is the recovery algorithm. The block diagram in Fig. 3.1
explains the key idea.

To place things in a context, consider the problem estimating a singer’s age from audio
samples of their song, taken over a course of years. For instance, given a collection of all of
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Figure 3.1: Block diagram for modeling inverse problems.

Michael Jackson’s songs, can we estimate the age from a given song? To solve this problem,
we first need to derive a mathematical model that mimics the physical process of generating
voice in human beings. This accounts for the forward model for the case study at hand. The
more accurate the forward model is, the better it relates to the audio samples of the song.
Clearly, one would expect the forward model to be parameterized by the age; the vocal
cords change as one ages. Given audio samples from a given era, the goal of estimating the
unknown parameter, that is the age in our case, amounts to solving an inverse problem using
a mathematical algorithm. The same analogy applies to a diverse set of problems spread
across various applications in science and engineering. Some commonplace examples of
inverse problems include,

• Denoising Chatterjee and Milanfar (2010): removing noise from measurements.

• Super-resolution Park et al. (2003): recovering high-resolution features from low-
resolution measurements.

• Deconvolution Kundur and Hatzinakos (1996): removing the influence of a measure-
ment device from the measurements.

We will revisit this aspect in details in 3.3.1. In what follows, we will be using foundational
theory from topics such as signal processing and linear algebra to study forward models.
There on, we will revisit some classical solutions to the inverse problems that will set the
ground for the upcoming chapters in the rest of this book.

3.2 Mathematical Tools

3.2.1 Signal Processing
Representing complicated phenomena by decomposing it into simpler constituents with the
goal of revealing hidden information is what describes signal processing. Signals can be
functions or sequences mapping a physical phenomena into continuous and discrete valued
observations. Processing refers to the appropriate mathematical operations that reveal
information of interest. One of the most interesting observations in this regard dates back
to the work of Joseph Fourier who in 1807 claimed that any periodic phenomena can be
described as a combination of harmonic waves. Over the course of centuries, this seemingly
simple observation has had significant implications across science and engineering.
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Here, we will briefly visit the basics of signal processing that allow us to represent captured
data (or measurements) as signals so that known tools can be applied for recovering
information.

Linear Systems: A system is a conceptual object (physical, mathematical or even com-
putational) that maps an input to the output. As shown below, a system accepts both
continuous-time functions and discrete sequences as an input. The output however can be
either a function or a sequence. For instance, a CD player maps a sequence of binary ‘bits’
to continuous-time sound.

f (t) g(t)

Continuous-time System Discrete-Time System

System f [m] g[m]System

Continuous-time functions are denoted by f (t) where the time variable t takes real values,
that is t ∈ R. Its discrete counterparts are represented as a sequence,

· · · f [−1] f [0] f [1] · · ·

that accepts discrete-valued argument m ∈ Z. For example, a continuous-time function can
be represented by discrete “samples” f [m] = f (mT) where T > 0 is the sampling rate.

In what follows, we will restrict our discussion to linear systems. Beyond the practical
utility of such a subclass of systems, what makes them appealing is that mathematical
analysis of such systems is a understood topic. Linear systems defined by operator L
satisfy two properties: (1) principle of additivity or sum at the output is the sum of the
inputs and (2) scaling or scaled input produces a scaled output. This leads to the definition
of a linear system.

Definition 1 (Linear System) Let u and v be the input the linear system L. Then, L is a linear
system when,

L [au + bv] = aL [u] + bL [v] , a, b ∈ C.

For stability purposes, operator L is required to continuous implying that small perturba-
tions in the input produce small perturbations at the output.

Many of the well known systems including computational imaging systems are modeled
as linear time-invariant systems. Stated simply, time-invariance refers to the property that
delayed input produces delayed output. Let us define fτ (t) = f (t − τ), that is, f delayed
by τ. Linear time-invariant or LTI systems ones which satisfy the following property,

g (t) = L [ f ] (t) ⇒ gτ (t) = L [ fτ] (t) . (3.1)
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In context of discrete-time signals, this property is known as the linear shift-invariance
property where “shift” is the discrete counterpart of continuous “delay.”

Impulse Response of a Linear System: An important property of an LTI system is its
impulse response. This is the response of an LTI system when the Dirac impulse is fed to
the system. For any function f continuous around zero, the Dirac impulse is defined as,

f (0) =
∫

f (t) δ (t) dt. (3.2)

The above can also be written as f (t) =
∫

f (τ) δτ (t) dτ. WhenL is continuous and linear,
we have,

L [ f ] (t) =
∫

f (τ) L [δτ (t)] dτ. (3.3)

Letting g to be the impulse response of L or g (t) = L [δ] (t), time-invariance property
(3.1) implies that L [δτ] (t) = g (t − τ). Therefore, by combining time-invariance property
and (3.3), we obtain the definition of convolution or filtering,

L [ f ] (t) =
∫

f (τ) L [δτ (t)] dτ

=

∫
f (τ) g (t − τ) dτ =

∫
g (τ) f (t − τ) dτ

= ( f ∗ g) (t) . (3.4)

Some useful properties of the convolution operator include

• Commutativity or the convolution operator commutes, ( f ∗ g) (t) = (g ∗ f ) (t).

• Associativity or the convolution order does not matter, ( f ∗ g ∗ h) (t) = (h ∗ f ∗ g) (t) =
(g ∗ h ∗ f ) (t).

• Differentiation property that asserts that the derivative of a convolution is equivalent to
convolution with the derivative of one of the functions,

d
dt

( f ∗ g) (t) =
(

df
dt

∗ g
)
(t) =

(
f ∗ dg

dt

)
(t) .

• Dirac convolution property which amounts to shifting of functions, f ∗ δ (t − τ) =
f (t − τ).

Same principles extend to the case of sequences. Whether working with continuous func-
tions or sequences, care should be taken in dealing with the properties of the convolution
operator in that the corresponding integrals and summations should be absolutely conver-
gent.
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h[n] = δ[n] − δ[n − 1]

n n n

g[n] = u[n] f [n] = c0

f [n] 0h g 0 g[n] δh f c0

In the context of the associative property, we highlight a pathological example above
where f [n] = c0 is a constant sequence, g[n] = u[n] is the Heaviside sequence and
h[n] = δ[n] − δ[n − 1] is finite difference filter. Clearly ( f ∗ h ∗ g) [n] � (g ∗ h ∗ f ) [n]
because on one hand, f ∗ h = 0 (difference of constant), on the other hand, g ∗ h = δ and
this leads to output c0.

Causality and Stability of a Linear System: A linear system is known to be causal if
the output does only depends on the past and current inputs (and not the future inputs).
Mathematically, this boils down to saying L [ f ] (t) does not depend on f (t ′) , t ′ > t.
Another important property of linear systems is that of stability. Practically speaking,
this property asserts that bounded input produces bounded output. Suppose that L is
characterized by impulse response g (t) or equivalently L [ f ] (t) = ( f ∗ g) (t). When the
input is bounded or maxτ | f (τ)| < ∞, the output is bounded,

|L [ f ] (t)| �
∫

| f (τ)| |g (t − τ)| dτ � max
τ

| f (τ)|
∫

|g (t)| dt (3.5)

whenever
∫
|g (t)| dt < ∞ or the impulse response is absolutely integrable. This is known

as BIBO stability where BIBO stands for bounded input and bounded output. There are
further mathematical considerations Unser (2020) that make the BIBO stability statements
precise. Stability property has profound implications when assessing the resilience of an
algorithm to noise. Ideally, one would hope that presence of noise or uncertainty at the
input does not blow away the output and this is where stability analysis is helpful.

Eigenfunctions of Linear Time-Invariant Systems and the Fourier Transform: One of
the key features of linear time-invariant systems is that the complex exponentials defined
by e ωt are eigenvectors of the convolution operator. Recall that for any linear system L,
when the following is true,

L [e] (t) = λe (t)

we say that λ is the eigenvalue and e (t) is the eigenfunction. As before, let L be char-
acterized by impulse response g (t). In view of (3.4), we have that L [ f ] (t) = ( f ∗ g) (t).
Consequently, when the input to this linear time-invariant system is fω (t) = e ωt , the
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Figure 3.2: Complex exponentials are eigenfunctions of linear time-invariant systems.

output is given by,

L [ fω] (t) =
∫

g (τ) fω (t − τ) dτ =
∫

g (τ) e ω(t−τ)dτ

= e ωt

︸︷︷︸
fω (t)

∫
g (τ) e− ωτdτ

︸���������������︷︷���������������︸
λω

= λω fω (t) (3.6)

implying that fω (t) = e ωt is indeed the eigenfunction of linear time-invariant system
because,

L fω (t) = λω fω (t) .

This is schematically explained in Fig. 3.2. Regardless of angular frequencyω, | fω (t)| = 1.
In viewof the stability condition, provided that the impulse response is absolutely integrable,
that is, ∫

|g (τ)| dτ = ‖g‖L1 < ∞, in other words, g ∈ L1,

the output L [ fω] (t) is always bounded and hence the output is well defined.

Note that the eigenvector λω defines the quantity,

λω =

∫
g (t) e− ωtdt,

what is widely known as the Fourier integral or the Fourier transform. Its formal definition
is as follows.

Definition 2 (Fourier Transform) The Fourier transform of a function f ∈ L1 is defined by,

∀ω ∈ R, f̂ (ω) =
∫

f (t) e− ωtdt. (3.7)

Whenever f̂ is absolutely integrable or f̂ ∈ L1, the inverse Fourier transform is defined by,

∀ω ∈ R, f (t) =
∫

f̂ (ω) e ωtdω. (3.8)

The Fourier transform is a mathematical tool that measures the amount of oscillations ω (in
radians per second) that are present in f (t). For example, in case of sinusoidal waveforms,
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the Fourier transform is a Dirac impulse (3.2) present at the oscillation frequency. This is
because Euler’s formula allows us to write

cos (ω0t) = e ω0t + e− ω0t

2
.

which shows presence of two frequencies at ω = ±ω0. More formally, this translates to,∫
cos (ω0t) e− ωtdt =

1
2

∫
e− (ω−ω0)tdt +

1
2

∫
e− (ω+ω0)tdt

=
1
2
(δ (ω − ω0) + δ (ω + ω0))

︸������������������������������︷︷������������������������������︸
Fourier Transform of cos(ω0t)

. (3.9)

On other hand, it takes all frequencies from −∞ to∞ to constitute a Dirac impulse defined
in (3.2). This is because, ∫

δ (t) e− ωtdt = e− ωt
��
t=0 = 1.

Note that both sinusoids and Dirac impulses violate the assumption of absolute integrability
or boundedness. However, with certain technical safeguards, it is possible to extend Fourier
analysis to wider classes of signals. This aspect is beyond the scope of this book but we
refer the interested readers to book Mallat (2009).

The Fourier transform is a unitary transform in that it preserves lengths. Let us denote the
inner-product by,

〈 f (t) ,g (t)〉 =
∫

f (t) g∗ (t) dt

where ∗ is the complex conjugate. When working with Fourier transforms, we have that,

〈 f (t) ,g (t)〉 =
∫

f̂ (ω) ĝ∗ (ω) dω =
〈

f̂ (ω) , ĝ∗ (ω)
〉
.

This is known as the Parseval’s theorem. Substituting g = f , we obtain,

〈 f (t) , f (t)〉 = ‖ f (t)‖2
L2
=

��� f̂ (ω)
���

2

L2

what is known as the Plancherel theorem and the quantity ‖ f (t)‖2
L2

is a measure of the
energy in f (t).

Fourier Transforms and Convolutions: In context of linear systems an interesting prop-
erty relates to the interaction between convolution or filtering and Fourier transforms. The
convolution theorem states that convolution or filtering in canonical domain amounts to
multiplication of Fourier transforms in the transform domain.

Theorem 3.1 (Convolution Theorem) Let f and g to be two given functions and let h (t) =
( f ∗ g) (t). Then, the Fourier transform of h (t) is given by ĥ (ω) = f̂ (ω) ĝ (ω). On the other
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hand, let p (t) be the product of functions, that is, p (t) = f (t) g (t). The Fourier transform of p (t) is
the convolution of Fourier transforms of f (t) and g (t), respectively, that is, p̂ (ω) =

(
f̂ ∗ ĝ

)
(ω).

The implication of the above theorem is that

L [ f ] (t) = ( f ∗ g) (t) =
∫

f̂ (ω) ĝ (ω) e+ ωtdω.

For instance, whenworkingwith sinusoids (which is the case inmany applications including
time-of-flight imaging that is discussed in Chapter 5), we directly obtain,

cos(ω0t) |ĝ(ω0)| cos (ω0t + ∠ĝ(ω0))g

Specifically, in case of discrete sequences, it allows for fast convolution or filtering oper-
ations via Fourier transforms can be implemented very efficiently using the fast Fourier
transform (FFT) algorithms.

Frequency Response: In signal processing jargon, spectrum is referred to the Fourier
transform of any given function while frequency response defines the Fourier transform of
the impulse response of a linear time-invariant system. Again, given linear time-invariant
system with Lδ (t) = g (t), its frequency response is defined by ĝ (ω) = |ĝ (ω)| e ∠ĝ(ω).
Here, |ĝ (ω)| is known as the magnitude response which is always non-negative and real-
valued. The real-valued quantity −π � ∠ĝ (ω) � +π is known as the phase response.

Fourier Series (Representing Periodic Functions): We say a function f is periodic if
it repeats itself periodically, f (t) = f

(
t + Tp

)
where Tp > 0 is the period. For exam-

ple sin (ω0t) = sin
(
ω0

(
t + 2π

ω0

))
and hence Tp = 2π/ω0. Aperiodic functions can be

periodized using the periodization operation,

fTp (t) =
∑
k∈Z

f
(
t + kTp

)
. (3.10)

For example, the Dirac impulse (3.2) can be converted into a picket fence or a Dirac comb
using,

XTp (t) =
∑
k∈Z
δ
(
t + kTp

)
.

The family of functions
{
e kω0t

}
k∈Z with ω0 = 2π/Tp forms an orthonormal basis of

Tp-periodic functions,

fTp (t) =
a0
2
+

∞∑
k=1

ak cos (kω0t) + bk sin (kω0t) =
∑
k∈Z

f̂ke kω0t (3.11)

where,
f̂k =

1
Tp

∫
Tp

fTp (t) e− kω0tdt =
1

Tp
f̂ (kω0) (3.12)
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are the Fourier series coefficients which simply amounts to observing the Fourier transform
at frequencies ω = kω0. Since the Fourier transform of Dirac impulse is unity or δ̂ (ω) = 1,
we have δ̂ (nω0) = 1 and hence,∑

n∈Z
δ
(
t + nTp

)
=
∑
k∈Z

e kω0t .

Many of the properties of the Fourier series are similar to that of Fourier transform as the
former is a specific case of the latter. For example, by using the convolution theorem in
Theorem 3.1, we see that

fTp (t) =
(

f ∗XTp

)
(t) = ∑

k∈Z
f̂ke kω0t

⇓∑
n∈Z

f
(
t + nTp

)
=

∑
k∈Z

f̂ke kω0t

(3.13)

which is the well known Poisson Sum Formula that is at the heart of studying analog to
digital conversion.

Analog-to-Digital Conversion and Sampling Theory

At the heart of digital data acquisition systems is the Shannon’s sampling theorem which
bridges the continuous and the discrete realms. The sampling theorem has had profound
implications and has led to the digital revolutionwhich is also known as the Third Industrial
Revolution. At the core of this fundamental topic is the question: When can a continuous
function be represented by a sequence of discrete numbers? As shown in Fig. 3.3, a
continuous-time function f (t) can be represented by its discrete counterpart, samples,
defined by, f [m] = f (mT) ,m ∈ Z. The key challenge being, how big can T be? If T
is too small, the amount of data needed to be stored will be huge. If T is too big, we
may never be able to reconstruct or recover the continuous-time function. For instance, let
f (t) = sin (ω0t). Setting f [m] = f (mT) with T = π/ω0 yields f [m] = 0 and there is no
information in the discrete samples. From this thought experiment it is clear that faster a
signal fluctuates, the more quick one should record its samples. To measure the “slowness”
or the “fastness” of a function, Shannon used the idea of bandlimitedness; the maximum
frequency contained by a function. The tool to measure this object is the Fourier transform.

Definition 3 (Bandlimitedness) We say a function is Ω-bandlimited if the largest frequency con-
tained by its Fourier transform is Ω, or,

f ∈ BΩ ⇔ f̂ (ω) = 0, |ω| > Ω.
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Continuous function is converted
to a vector of discrete measurements

Vector of Samples

Fourier
Transform

Figure 3.3: Sampling theory addresses the problem of representing a continuous-time
function with discrete samples.

Periodized Spectrum

(a)

(b)

Figure 3.4: (a) Bandlimited function. (b) Effect of Fourier spectrum periodization.

In Fig. 3.4a, we show the Fourier transform of a Ω–bandlimited function. Given Ω, we can
periodize the Fourier transform of f using (3.10) to obtain,

f̂Ω0 (ω) =
∑
n∈Z

f̂ (ω +Ω0n). (3.14)
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which is shown in Fig. 3.4b. Note that we must enforce Ω0 � 2Ω or else, the successive
bands

{
f̂ (ω + nΩ0)

}
n
will overlap leading to loss of information. This is known as aliasing.

Due to periodic nature of f̂Ω0 (ω), we can now represent this function as a Fourier series
with harmonic frequency T0 = 2π/Ω0 or,

f̂Ω0 (ω) =
∑
k∈Z

zke− kT0ω, T0 =
2π
Ω0

(3.15)

where the Fourier series coefficients are given by

zk =
1
Ω0

∫
Ω0

f̂Ω0 (ω) e kT0ωdω =
1
Ω0

f (kT0) .

Note that the (3.15) is equivalent to the result of (3.13). In order to reconstruct f (t) from
f̂Ω0 we perform frequency domain filtering,

f (t) =
∫

f̂Ω0 (ω)1[−Ω,Ω] (ω) e ωtdω =

+Ω∫

−Ω

f̂Ω0 (ω) e ωtdω. (3.16)

Using Ω0 = 2Ω and substituting (3.15) in (3.16), we see that,

f (t) =
Ω∫

−Ω

f̂2Ω (ω) e ωtdω =
1

2Ω

∑
k∈Z

f (kT0)
Ω∫

−Ω

e ω(t−kT0)dω

=
1

2Ω

∑
k∈Z

f (kT0)
2 sin (Ω (t − kT0))

(t − kT0)
=
∑
k∈Z

f (kT0)sinc
(

t
T0

− k
)

where sinc (t) = sin (πt) /(πt) is the sinus cardinalis function. In summary, we can write,

f ∈ BΩ, f (t) =
∑
k∈Z

f [k]sinc
(

t
T0

− k
)

which shows that continuous-time, Ω–bandlimited signal f (t) can be represented by dis-
crete samples f [k] = f (kT0). This also defines the sampling distance T0 as,

Ω0 � 2Ω⇒ π

T0
� Ω.

The upper limit π/T0 on the maximum frequency Ω contained in f is known as the Nyquist
Frequency that is commonly used in the context of digital communications. We are now
ready to state the sampling theorem formally.

Theorem 3.2 (Shannon’s Sampling Theorem) If a function f (t) is bandlimited to Ω (in radians
per second), it is completely characterized by equidistant samples f [k] = f (kT0) spaced T0 = π/Ω
seconds apart.
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Figure 3.5: Two-dimensional bandlimited signal and periodization of its Fourier transform.

In almost all practical applications, the analog-to-digital conversion or sampling takes place
at the level of the sensor and the discrete samples are obtained. However, at this stage of the
data capture pipeline, the signals are discrete-time meaning that a function of continuous
time variable is converted to a sequence of samples which is defined for discrete-time
instances. The amplitudes f [k] are still real-valued and require infinite precision and
storage capacity. Depending on the budget of the analog-to-digital converter (number of
bits), the amplitude is assigned a finite memory by rounding of its values. For instance
f [k] = π is converted to f [k] = 3.142. This process is known as quantization . Once the
quantization has been performed, the samples have a discrete representation on both time
and amplitude axis. Such a representation is known as digital samples.

The sampling theorem can be extended to the case of multi-dimensional signals such
as images and volumes. To do this, we will briefly revisit the N–dimensional Fourier
transform. To represent a point in RN as an N–tuple, let us denote t =

[
t1 · · · tN

]
.

The N–dimensional Fourier transform of

f (t) or f (t1, t2, . . . , tN )

is then defined as,

f̂ (ω) =
∫

RN

f (t) e−  〈ω,t 〉d t =
∫

RN

f (t) e− 
∑N

n=1 ωn tn d t (3.17)

where 〈ω, t〉 is the conventional inner-product or the dot-product. A useful property that
allows us to extend one-dimensional Fourier transform to N–dimensional Fourier transform
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is that of separability. A separable function f of N variables can be written as N-functions
of one variable, or,

f (t1, t2, . . . , tN ) = f1 (t1) f2 (t2) · · · fN (tN ) or f (t) =
N∏
n=1

fn (tn).

This also extends to the N–dimensional Fourier transform in that,

f̂ (ω) =
N∏
n=1

f̂n (ωn).

For instance, Dirac impulses and the sinc function used in sampling theory are separable
functions and hence their Fourier transforms are separable too. For simplicity, consider a
two-dimensional function, bandlimited function f (t1, t2), the one whose Fourier transform
satisfies the bandlimitedness condition (cf. Fig. 3.5),

f̂ (ω1,ω2) = 0, |ω1 | > Ω1 and |ω2 | > Ω2.

In analogy to (3.14), its two-dimensional periodic version takes form of,

f̂Ω0 (ω1,ω2) =
∑

k∈Z2

f̂
(
ω1 +Ω0,1k1,ω2 +Ω0,2k2

)

and hence, the Fourier series representation of this function is given by,

f̂Ω0 (ω1,ω2) =
∑

k∈Z2

zke− (k1T1ω1+k2T2ω2), zk =
1

Ω0,1Ω0,2
f (k1T1, k2T2) .

This is shown in Fig. 3.5. As before, performing frequency domain filtering (3.16) with
Ω0,1 = 2Ω1 and Ω0,2 = 2Ω2, and using the separability of box function, we obtain the
sampling formula,

f (t1, t2) =
∑

n∈Z2

f (n1T1,n2T2) sinc
(

t1
T1

− n1

)
sinc

(
t2
T2

− n2

)

which is exactly satisfied as long as,
π

Tn
� Ωn, n = 1,2,

which is the Nyquist criterion for two-dimensional signals.

The discussion of multi-dimensional sampling theory sets the ground for multi-dimensional
discrete representation of continuous functions. In this context, the dimensionality of
the data representation leads to the definition of vectors, matrices and tensors which are
mathematical objects in linear algebra that will play a key role in designing mathematical
algorithms for solving inverse problems.
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f [k]

f [k1, k2]

f [k1, k2, k3]





Figure 3.6: Discretization of information on one, two and three dimensions leading to
mathematical objects of vector, matrix and tensor, respectively. In case of images, a pixel
maps to an element in the matrix. In case of volume based data, a voxel maps to an element
in the tensor.

As shown in Fig. 3.6, one-dimensional data is stored as vectors. Two-dimensional data
is stored as matrices. This is the case when dealing with images. Each element of a
matrix corresponds to a pixel in the image sensor. Two-dimensional data is stored as
tensors (or three-dimensional matrices). Such data structures typically arise in the context
of time-resolved and hyperspectral imaging applications.

3.2.2 Linear Algebra
Stated simply, when a linear system is discretized, it can be interpreted as a linear system
of equations. For example, when the Fourier transform defined in (3.7) is discretized, the
integral takes form of a sum. Similarly, discretization of the convolution/filtering operation
in (3.4) can also be represented as operations with discrete sequences. In all such cases,
one ends up with representations of the form,

g [m] =
N−1∑
n=0

a [m,n] f [n], m = 0, . . . ,M − 1.
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Figure 3.7: Vectors and matrices. Definitions and basic operations.

which is a linear system of M equations,

g [0] = a [0,0] f [0] + a [0,1] f [1] + · · · + a [0,N − 1] f [N − 1]
g [1] = a [1,0] f [0] + a [1,1] f [1] + · · · + a [1,N − 1] f [N − 1]

...

g [M − 1] = a [M − 1,0] f [0] + a [M − 1,1] f [1] + · · · + a [M − 1,N − 1] f [N − 1] .

Given measurements {g [m]}M−1
m=0 and {a [m,n]}m∈[0,M−1],n∈[0,N−1], in many problems in-

terests, the goal is to estimate or recover { f [n]}N−1
n=0 .

With some of the first results dating back to the work of Gauss5, linear algebra seeks to
handle the cumbersome equations above in a compact, systematic and efficient fashion.
This is a mature topic and many of the results are well understood. For a first course on
this topic, we refer the readers to Meyer (2000); Strang (2016). Here we will revisit basic
tools and techniques that will be used in upcoming chapters.

Notation and Basic Definitions: Four mathematical objects that will appear throughout
this book are scalars, vectors, matrices and tensors.

1. Scalars are single numbers which may be from a set of natural, integer, real or complex
valued numbers. They are written in lowercase, italic format, for instance m ∈ Z, x1 ∈ R
and z ∈ C.

5One of the classical approaches for solving a linear system of equations is credited to German mathematician,
Johann Carl Friedrich Gauss. This approach is known as Gaussian elimination.
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2. Vectors are an array of ordered and indexed numbers denoted by boldface font x. The
number of elements in a vector defines the dimension of the vector. For example, x ∈ CN

defines a vector with N ordered elements x1, x2, . . . , xN which are complex-valued. In
computations involving vectors, we explicitly spell out the entries in a column form,

x =



x1

x2
...

xN



∈ CN .

Transpose of a vector converts the it into row format,

x ∈ RN , x� =
[

x1 x2 · · · xN
]

while the conjugate-transpose orHermitian transpose converts a vector into row format
with complex-conjugate operation on each element,

x ∈ CN , xH =
[

x∗1 x∗2 · · · x∗N

]
.

From a geometrical perspective, a vector is a point in space with each element repre-
senting its Cartesian co-ordinate. This is shown in Fig. 3.7.

The length of a vector is measured using the Euclidian norm, or,

‖x‖2 =

√√√
N∑
n=1

x2
n ≡

√
x�x.

This quantity is also known as the �2-norm. Square of this quantity defines the energy
of a signal and generalizes the notation of Pythagorean theorem to N-dimensions.
Normalizing a vector with its �2-norm results in a unit vector or unit-norm vector.

The contribution of a vector along each co-ordinate is known as orthogonal projection.
This is measured using the inner-product or the dot-product denoted by 〈x,y〉 = xHy
always results in a real-valued scalar. This operation is defined by,

〈

x1
...

xN


,



y1
...

yN



〉
= xHy =

N∑
n=1

xny∗n.

In view of Fig. 3.7, note that,

〈x,e1〉 =
〈[

x1

x2

]
,

[
1
0

]〉
= x1 and 〈x,e2〉 =

〈[
x1

x2

]
,

[
0
1

]〉
= x2.
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Figure 3.8: Classification of Square, Tall and Fat matrices and its link with rank deficiency.

Two vectors are orthogonal if their inner-product is zero. In view of we have, Fig. 3.7,
〈e1,e2〉 = 0.

3. Matrices are formed by two-dimensional arrays of scalars. This is obtained by stacking
vectors. Let {an}Nn=1 ∈ CM , that is, N vectors each compromising of M elements.
Then, we have a matrix,

A =
[

a0 a1 · · · aN

]
∈ CM×N

When working with measurements in practice, there may be different scenarios in that the
number of unknowns are equal, more or less than the number ofmeasurements, respectively.
These cases can be classified in terms of the dimension and the rank of the matrix used
for modeling the physical phenomenon. In what follows, we will first discuss the idea of
full-rank and rank-deficient matrices. Depending on the classification, we develop solutions
for inversion of the matrix.

Matrix Dimension, Rank and Inversion. The size of a matrix (or matrix dimension)
and its rank play a key role in solving different classes of inverse problems. Whenever a
number K is smaller than the smallest dimension of the matrix, the matrix is known to be
rank deficient. The different cases shown in Fig. 3.8 are as follows:

• Square Matrix (M × M). This is the case when the number of unknowns is the same
as the number of equations. When K = M , the matrix is said to be a full-rank and the
matrix inverse is well-defined, that is, H−1H = I (identity operation). For a simple 2×2
matrix H,

H =
[

a b

c d

]
,
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its inverse is defined by,

H−1 =
1

ad − bc

[
d −b

−c a

]

and it is easy to see that such a matrix is always invertible provided that ad − bc � 1.
A matrix is rank deficient when K < M and the number of independent equations is
smaller than the number of unknowns.

• Tall Matrix (M > N). In this case, the matrix contains more rows than columns and
the system of equations is known to be overdetermined. In this case, there are more
equations than unknowns. When K < N , the matrix is rank deficient.

Inversion. Suppose that we are given a system of equations g = Hf such that M > N
with linearly independent columns. It is natural to ask what is the best strategy for
estimating f given measurements g? In this setting, a desirable feature of the estimated
solution f� is that when plugged back, the resulting Hf� should be close to the observed
vector g. Hence it makes sense to minimize the quantity, ‖g − Hf‖2

2 that measures the
distance between Hf and g. In literature, this is typically known as the cost function,
or,

C (f) = ‖g − Hf‖2
2 = (g − Hf)� (g − Hf) = ‖g‖2

2 − 2 〈g,Hf〉 + 〈Hf,Hf〉 (3.18)

and,
f� = minf C (f) .

Here we assume that the vectors and matrices that are involved are real-valued but the
applies to complex-valued system of equations. In either case, each of the terms that
appear in C (f) are scalars and the first term ‖g‖2

2 is independent of f. To find the
minimizer of C (x), we set its derivative to zero. To this end, we have,

∂

∂f C (f) = −2H�g + 2H�Hf and hence
∂

∂f C (f) = 0 ⇒ H�Hf = H�g.

Provided that H�H is invertible, we have,

minf C (f) = minf ‖g − Hf‖2
2 ⇒ f� =

(
H�H

)−1H�g (3.19)

which is the least-squares solution for an overdetermined system.

• Fat Matrix (M < N). In this case, the matrix contains more columns than rows and
the system of equations is known to be underdetermined. In this case, there are more
unknowns than unknowns. When K < M , the matrix is rank deficient.

Inversion. Due to the underdetermined nature of g = Hf, there are many solutions
that satisfy this equation. In this case, a common practice is to seek a solution with the
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smallest energy (minimum norm). At the same time, we would like to ensure that the
solution Hf� fits the observed vector g or g = Hf�. This can be posed as the following
constrained problem,

min
f

‖f‖2
2 such that g = Hf.

The Least-squares constrained minimization problem can be solved using the method
of Lagrange multipliers. To this end, we define the ‘Lagrangian’ cost function,

Cλ (f) = ‖f‖2
2 + λ

� (g − Hf) ≡ 〈f, f〉 + 〈λ,g − Hf〉 (3.20)

where λ is a vector of weights. In comparison to the cost function in the overdetermined
case (in (3.18)), our next is to minimize Cλ (f) with respect to both f and λ. To this end,
we have,

∂

∂f Cλ (f) = 2f − H�λ and
∂

∂λ
Cλ (f) = g − Hf.

By setting the above derivatives to zero (for minimization), we obtain a simultaneous
system of equations yielding λ,

∂

∂f Cλ (f) = 0 ⇒ f = 1
2

H�λ

∂

∂λ
Cλ (f) = 0 ⇒ g = Hf



⇒ λ = 2

(
HH�)−1g.

Provided that HH� is invertible, we have,

f� = H� (HH�)−1g. (3.21)

3.3 Model-Based Inversion

One of the key aspects of computational imaging is “computation” which finds its way in
the process involved with recovery of information from captured data. In almost all of
the cases, the sensor discretizes the measurements using the sampling process leading to
the discrete representation of the mathematical model which can be analyzed using the
vector-matrix representation, as shown in Fig. 3.9. Given a linear operator L, in many
problems of interest, the goal is to recover or estimate the input f (t) from the output,

g (t) = L [ f ] (t) =
∫

f (τ) h (t, τ) dτ.

Whenever the system is characterized by translation invariance, that is, h (t, τ) = hτ (t)
(c.f. (3.1)), the above representation leads to a convolution/filtering or g (t) = (h ∗ f ) (t).
In either case, the discrete representation (via sampling or analog-to-digital conversion) of
the problem can be written in vector-matrix form,

g = Hf.
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C onti n uous-ti me Li ne ar Syst em D iscr ete R eprese n tation

R ecov ery  M ethod R ecov ery M ethod

Figure 3.9: Continuous-time linear system and its matrix representation.

When solving for the input signal, we say the problem is well-posed if,

• a solution exists.

• the solution is unique.

• the inversion is stable (or the inverse of the operator L in context of h (t, τ) or H is
continuous).

In literature, these basic requirements are known as theHadamard criteria . In workingwith
finite dimension data (the case with vector-matrix notion), while existence and uniqueness
can imposed, the inversion of the discrete system may turn out to be a highly ill-posed
problem.

3.3.1 Examples of Ill-posed Inverse Problems
Next, we discuss some common place applications that lead to ill-posed problems.

1. Example of an Ill-posed Problem: Deconvolution

A classical example of a highly ill-posed problem is that of deconvolution which
arises in the context of filtering and will be revisited a number of times in this book.
Said simply, deconvolution is the problem of recovering sharp features from smooth
measurements. More concretely, consider the normalized Gaussian function,

ϕσ,µ (t) =
1√

2πσ2
e−

(t−µ)2
2σ2

Fourier−−−−−→ ϕ̂σ,µ (ω) = e−
ω2σ2

2 − ωµ .

Suppose that the input signal f (t) = ϕσf ,0 (t) is filtered with a h (t) = ϕσh ,0 (t) such
that σf � σh (see Fig. 3.10a). In this case, the output is given by,

g (t) = ( f ∗ h) (t) = ϕσg ,0 (t) , σg =
√
σ2
f
+ σ2

h
.

This is shown in Fig. 3.10b. The goal of the deconvolution problem is to recover
f (t) given measurements g (t) and filter h (t). Clearly, when σf � σh , the σg ≈ σh
and the problem is ill-posed as the measurement and the filter h are relatively similar.
This aspect becomes clear when we look at the Fourier domain representation of the
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Figure 3.10: Example of an ill-posed problem. Here we consider the case of deconvolution.
(a) f (t) = ϕσf ,0 (t) is filtered with a h (t) = ϕσh ,0 (t). (b)Whenσf � σh , themeasurement
g (t) = ( f ∗ h) (t) = ϕσg ,0 (t) is very similar to the filter h (t). (c) Fourier transforms of the
f (t) and h (t). (d) Reciprocal of the Fourier transform “blows-up” leading to instabilities.

problem. From the convolution-multiplication theorem (cf. Theorem 3.1), we have,

g (t) = ( f ∗ h) (t) Fourier−−−−−→ ĝ (ω) = f̂ (ω) ĥ (ω) ⇒ f̂ (ω) = ĝ (ω)
ĥ (ω)︸�����������︷︷�����������︸

Deconvolution

.

In principle, one could estimate the Fourier transform of f (t) using the above and
reconstruct f (t) using the inverse Fourier transform. However, as shown in Fig. 3.10c,
the Fourier transform of h(t) approaches near zero values quickly and hence evaluation
of 1/ĥ (ω) results in blowing-up of the spectrum. This is shown in Fig. 3.10d. This is
the exact cause of instability which makes the problem ill-posed.

2. Example of an Ill-posed Problem: Motion-Deblurring

One of the most practical examples of an ill-posed problem is what is known asmotion-
deblurring. This situation arises when an object moves during the time a an image
is being captured using an imaging sensor. Consider the setting that is shown in
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Fig. 3.11. An imaging sensor observes two different objects; in the first case, the object
is stationary (see Fig. 3.11a) and in the other case the object is inmotion (see Fig. 3.11b).
The imaging sensor acquires a "photograph" which is essentially the number of photons
collected at given pixel during the exposure time. Exposure time is the duration for
which the light enters the sensor. Higher the exposure time, more is the light collected
at the sensor. Mathematically, capturing an image boils down to integration. In the
context of the stationary object in Fig. 3.11, the photograph at a given pixel (around x0)
and for exposure time t ∈ [t0, t1] is given by,

g (x0) =
t1∫

t0

fs (t, x0) p (x0) dt = fs (x0) p (x0) (t1 − t0)

where we have used fs (t, x0) = fs (x0) since the object fs (t, x0) is stationary with
respect to time and p (x) is the point spread function.

Moving to the case of moving object fm (t, x), from Fig. 3.11b, it is clear that,

g (x0) =
t1∫

t0

fm (t, x0) p (x0) dt = fs (x0) p (x0) (t1 − t0)

since the object is stationary or fs (t, x0) = fs (x0) during the time of exposure, that is
t ∈ [t0, t1]. However, in case of a longer time exposure t2   t1,

g (x0) =
∫ t2

t0

fm (t, x0) p (x0) dt =
∫ t2

t0

fm (x0 − t) p (x0) dt

= p (x0)
∫

fm (x0 − t)1[t0 ,t2] (t) dt

= p (x0) ( fm ∗ h) (x0)

where h (t) = 1[t0 ,t2] (t) is the indicator function defined by,

1[ta ,tb ] (t) =
{

1 t ∈ [ta, tb]
0 t � [ta, tb]

.

Ignoring p (x0), we observe that the image is nothing but filtering with the box-function,

g (x0) = ( fm ∗ h) (x0) , h (t) = 1[t0 ,t2] (t) .

In this setting, the inverse problem is to recover the moving object fm (x0) given the
image g (x0). To see why this problem is ill-posed, note that the Fourier transform of
the box-filter is given by,

1[ta ,tb ] (t)
Fourier−−−−−→ 

e ωtb − e ωta

ω
= ĥ (ω)
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Figure 3.11: Motion deblurring is an ill-posed problem which can be made well-posed by
using computational imaging methods.

which the difference between two sinusoids with frequencies proportional to the length
of the box with envelope 1/ω. For simplicity, consider the case when the box-filter
is symmetric, or ta = −tb = t0/2. The Fourier transform simplifies to the classical
sinc-function,

1 |t |� t0
2
(t) Fourier−−−−−→ sinc

( ω
2π

t0
)
.

Hence, the measurements in the Fourier domain read,

g (x) = ( fm ∗ h) (x) Fourier−−−−−→ ĝ (ω) = f̂m (ω) ĥ (ω) , ĥ (ω) = sinc
( ω
2π

t0
)
.

This implies that longer the exposure, larger is t0 and hence more frequent are the zeros
of the sinc-function that annihilate the information in f̂m (ω). Furthermore, the nulls
in the high frequencies of sinc

(
ω
2π t0

)
zero out the information in f̂m (ω), resulting in

blurring or smearing. There is no way one can recovery the lost information in ĝ (ω).

Since the zeros of the sinc-function lead to loss of information, making the problem
ill-posed, in Raskar et al. (2006), the authors proposed a scheme to turn this setting in to
a well-posed problem. This is known as coded exposure photography. Here, instead
of simply opening and closing the camera shutter (yielding a temporal box-filter), the
idea is to use a sequence of on-off patterns leading to box-filters of different widths.
This is shown in Fig. 3.11. In this approach, chosen such that zeros of one box filter are
compensated by non-zeros of other box-filters. When an “optimal” code is chosen, the
Fourier transform is almost flat (or constant), thus preventing any loss of information.
Hence, making ĥ (ω) invertible.
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Model-based inversion techniques provide a systematic solution to solving inverse
problems. As we will show in this section, there are many applications where an
unknown signal needs to be reconstructed from a set of measurements. Assuming that
the image formation model is known, the inversion of the forward model depends on
a set of system parameters, intrinsic to the phenomenon being analyzed, and a number
of regularity conditions, which are characteristic to the inversion method. We will
consider three common place examples. (i) Tomographic reconstruction in medical
imaging, the tomographic reconstruction, (ii) Image deconvolution or deblurring and,
finally, (iii) sub-surface imaging via seismic waveform inversion. Although the last
example may seem somewhat unrelated, the main ideas are widely used in imaging
examples such as sub-surface imaging of tissues or non-line-of-sight imaging.

3.3.2 Tools and Techniques
Through preceding discussions, we have seen how inverse problems (in many cases) can
be modeled as a linear system of equations. Seeking solutions to an inverse problem
boils down to inversion of the system that defines the relationship between the inputs
and the outputs. We studied basic examples in 3.2.2 when working with overdetermined
and underdetermined systems. Here, we will discuss further ideas from least-squares and
sparse optimization based methods. The purpose of this chapter is develop a familiarity
with basic and frequently used regularization approaches. By no means this discussion is
complete. For interested readers, we refer to the reference material on numerical methods
Björck (1996), optimization theory Boyd and Vandenberghe (2004) and sparse recovery
Elad (2010).

Least Squares Optimization.

1. Regularized Least Squares.

In 3.2.2, we saw that in the case of overdetermined system, we aim at minimizing
‖g − Hf‖2

2 while in the case of underdetermined system, our goal is to minimize ‖f‖2
2.

Furthermore, in either case, it is required that H�H is invertible6. Hence, in working
with the general case where H may be fat or tall, we can directly minimize the linear
combination,

µ1 ‖f‖2
2 + µ2 ‖g − Hf‖2

2 = µ2

(
µ1
µ2

‖f‖2
2 + ‖g − Hf‖2

2

)

6Although the invertibility condition that appears in the context of underdetermined system is based on HH�, the
rank of this matrix is that same as that of H�H.
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which depends on the ratio of linear coefficients, that is λ = µ1/µ2 > 0. We can now
define the cost function,

Cλ (f) = ‖g − Hf‖2
2 + λ ‖f‖2

2

and following the approach previously outlined, we obtain,
∂

∂λ
Cλ (f) = 2 〈H,Hf − g〉 + 2λf = 0 ⇒ f� =

(
H�H + λI

)−1g.

Here, the scalar λ > 0, also known as the regularization parameter, “regularizes” the
solution. To see this in effect, we are now working with,

����
�
H�H +



λ

. . .

λ



����
�

−1

(Diagonal Loading).

Even when H�H (and hence HH�) is rank deficit, the regularization parameter ensures
that

(
H�H + λI

)−1 is invertible.

2. Constrained Least Squares.

A strategy that is applicable to a broad variety of least squares problems entails a
solution to the system of linear equations with constraints. This is also known as the
constrained least squares problem,

minf ‖g − Hf‖2
2︸�������������︷︷�������������︸

Least Squares

such that Af = b︸��︷︷��︸
Constraint

. (3.22)

To solve this optimization problem, we use the Lagrange multiplier based strategy and
define the cost function,

Cλ (f) = ‖g − Hf‖2
2 + 〈λ,Af − b〉

where λ is a vector. Again, minimizing the cost function with respect to f and λ, we
obtain,

∂

∂f Cλ (f) = 2H� (Hf − g) + A�λ and
∂

∂λ
Cλ (f) = Af − b,

respectively. Setting the first derivative to zero, we obtain,
∂

∂f Cλ (f) = 0 ⇒ 2H� (Hf − g) + A�λ = 0

H�Hf − H�g = −1
2

A�λ

f =
(
H�H

)−1
(
H�g − 1

2
A�λ

)
.
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The second derivative when set to zero, trivially yields ∂
∂λCλ (f) = 0 ⇒ Af = b and

we have the simultaneous equations,

f =
(
H�H

)−1
(
H�g − 1

2
A�λ

)
(3.23)

Af = b. (3.24)

To solve for λ, we simplify (3.24) by multiplying (3.23) by A on the left hand side. This
yields,

A
(
H�H

)−1
(
H�g − 1

2
A�λ

)
= b.

Solving for λ, we obtain,

λ = 2
(
A
(
H�H

)−1A�
)−1 (

A
(
H�H

)−1H�g − b
)
.

Substituting this value of λ in (3.23), we obtain the solution we were seeking,

f =
(
H�H

)−1
(
H�g − A�

(
A
(
H�H

)−1A�
)−1 (

A
(
H�H

)−1H�g − b
))
. (3.25)

The generality of this solution is easily appreciated. For instance, let us set g = 0,
H = I. In this case, f simplifies to f = A� (AA�)−1b. This is the minimum norm
solution to the underdetermined system of equations Af = b in (3.21).

Sparse Regularization. In the least squares regularization discussion, we have seen that
the cost function is written as a sum of data fidelity term (or how close is the estimated
signal to the measurements) and the term that defines the constraints or regularization. In
practice, the constraints may arise from physical properties of the problem or may simply
enforce an empirically desirable feature. Hence, in general, one may write the cost function
as,

Cλ (f) = D (g,Hf) + λR (f) (3.26)

whereDmeasures distortion or distance betweeng andHf whileR is the regularization term
which enforces a desirable/undesirable features. The extent to which R affects the solution
is controlled by the regularization parameter λ. As we have seen earlier, the conventional
choice for D is the least squares distance or the 2–norm, that is, D (g,Hf) = ‖g − Hf‖2

2.

When it comes to the choice of the regularization term, in the last decade or so, the notion
of sparsity has been preferred over least squares regularization. By sparsity, one simply
implies that when solving for Hf = g, we also look for f which has few non-zero entries.
In particular, we say that f ∈ RN signal is a K–sparse vector when any K out N entries
are non-zero. To develop an instant appreciation for the notion of sparsity, we present a
toy example in Fig. 3.12 which demonstrating the advantage in the case of denoising. In
Fig. 3.12a, we show a data vector (oracle) containing a sum of two sinusoids in the time
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Figure 3.12: Denoising by leveraging sparsity. (a) Time-domain samples of a sum of two
sinusoids and its noisy measurements with 0 dB signal-to-noise-ratio (SNR). (b) Fourier
domain representation. Since the data comprises of a sum of two sinusoids, its Fourier
domain representation is a 2-sparse signal comprising of two spikes. Adding noise changes
this, leading to a number of spurious spikes. (c) Reconstruction via sparsity. In Fourier
domain, we remove all but two largest coefficients because we know that the data comprises
of a 2-sparse signal. Time domain reconstruction shows the effect of denoising and results
in a near perfect reconstruction.
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Figure 3.13: Soft-thresholding function as an inverse function. (a) Graph of the function
gn = fn + λ

2 sgn ( fn). (b) To evaluate fn given gn, we invert the graph in (a) which yields
the definition of the soft-thresholding function. The grid lines in gray represent ±λ/2.

domain. This data is corrupted by additive white Gaussian noise with 0 dB signal-to-noise-
ratio (SNR). In Fig. 3.12b, we plot the Fourier domain representation of the data vector
and noisy vector. As we have seen before (cf. (3.9)), the Fourier transform “sparsifies” a
sinusoid. Due to the linearity of the Fourier transform, a sum of K sinusoids results in a
K-sparse signal in the Fourier domain. When working with noisy measurements, we can
leverage this information and remove all but K = 2 largest Fourier components. There
on, a simple inverse Fourier transform yields a near perfect reconstruction in Fig. 3.12c.
Sparsity regularized solutions are leveraged in several applications presented in this book.
Examples include (a) compressive imaging 4.4.1, (b) light-in-flight imaging in 5.5.2, (c)
coded spectral imaging 8.3.4 and (d) sub-surface and skin imaging 10.5.2.

To enforce sparsity as a regularization prior, a typical approach is to use the �1–norm. This
is mathematically defined by, R (f) = ‖f‖�1 . For simplicity of notation, we simply write
‖f‖1, where,

‖f‖1 = | f1 | + | f2 | + · · · | fN | .

Clearly, the �1–norm of f is small when many of its entries are zero.

Sparse Recovery by Soft-Thresholding. In the example presented in Fig. 3.12, the key
idea behind enforcing sparsity (in Fig. 3.12b) was a non-linear decision process; keep K
largest Fourier coefficients. This entails removing many of the coefficients, an operation
that is known as thresholding. The same intuition translates to the mathematical procedure
when solving the sparse regularization problem. To this end, consider a special case of the
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cost function in (3.26) where we set H = I (identity operation) and R (f) = ‖f‖1 is used to
enforce sparsity. Our cost function takes the form of,

Cλ (f) = ‖g − f‖2
2 + λ‖f‖�1 =

N∑
n=1

(gn − fn)2 + λ | fn |. (3.27)

To minimize this cost function, we differentiate it and obtain,
∂

∂f Cλ (f) = (gn − fn) + λ sgn ( fn)

where sgn is the sign or the signum function. To obtain the optimal value of f, the one that
minimizes (3.27), we set the derivative of the cost function to zero,

∂

∂f Cλ (f) = 0 ⇒ gn =

(
fn +
λ

2
sgn ( fn)

)
(element-wise)

This gives a non-linear relation between fn and gn. To define fn in terms of gn, we use the
inverse function method. In Fig. 3.13a, we plot gn =

(
fn + λ

2 sgn ( fn)
)
. Interchanging the

axes in Fig. 3.13b defines fn in terms of gn which, for an arbitrary x, is analytically written
as,

softλ (x) = sgn (x)
(
|x| − λ

2

)
1 |x |> λ

2
(x) .

This is the soft-thresholding function. The minimizer of (3.27) is given by,

f� = softλ(g).

The basic strategy for the cost function generalizes to the case when the measurements g
are explained by the forward model H and hence, one seeks to minimize,

Cλ (f) = ‖g − Hf‖2
2 + λ‖f‖�1 . (3.28)

There are standard approaches to solve this problem which are categorized into the broad
themes of,

1. Pursuit algorithms Elad (2010) such as orthogonal matching pursuit (OMP), basis
pursuit (BP) and basis pursuit denoise (BPDN).

2. Thresholding based algorithms such as iterated soft-thresholding algorithm (ISTA)
Daubechies et al. (2004) and its accelerated version, fast iterated soft-thresholding
algorithm (FISTA) Beck and Teboulle (2009).

3. Majorization-minimization Figueiredo et al. (2007) based algorithms where one seeks
to break down a cost function in terms of simpler, typically, quadratic minimization
problems.
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Beyond this, for readers interested in more general optimization approaches around the
themeof proximal splittingmethods and alternating-directionmethod ofmultipliers (ADMM)
based optimization, we refer to the reference materials Parikh and Boyd (2014); Combettes
and Pesquet (2011); Bach et al. (2011).

3.3.3 Examples of Model-based Reconstruction

1. Tomography. Model-based inversion techniques are required to recover data from
measurements such as computer tomography (CT) scans or positron emission tomog-
raphy (PET) scans. As opposed to localized imaging, which probes single points in the
target, in tomographic imaging the measurement contains contributions from larger re-
gions, which leads to a more complex but interesting inversion problem. Those are both
examples of ray tomography, which performs scans along given lines, and then sums
up the distribution of the target object along those lines. Typically, the ray tomography
scan results in measurements of the form

m = exp
(
−
∫
ray l
α(l) dl

)
,

where α(l) denotes the absorption coefficient of the object along line l. The sum ray,
or projection, is given by

∫
ray l α(l) dl = − ln (m). The sum ray can be expressed more

rigorously using the Radon transform:

p(s, φ) =
∞∫

−∞

d(s cos φ − τ sin φ, s sin φ + τ cos φ) dτ,

where d(x, y) denotes the 2D distribution of the object, and p(s, φ) denotes the projec-
tion. The inverse problem in this case is recovering d(x, y) given enough measurements
of p(s, φ).

An important mathematical result, known as the projection slice theorem, shows an
intuitive way to solve the inversion of the Radon transform . It states that each Radon
projection p(s, φ) represents the 1D inverse Fourier transform of a slice of the object
distribution d(x, y). The corresponding equation is

p̂φ (ks) = d̂ (ks cos φ, ks sin φ) .

This means that we can recover any slice of d̂ by computing the 1D Fourier transform
of the Radon transform along variable s.

Let us take a very popular example of ray tomography, computer axial tomography
(CAT) also known as computed tomography (CT). This system is designed to compute
systematically as many projections from the 3D object as possible, which should in turn
generate enough slices of function D. The CAT scanner emits a series of parallel beams
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Figure 3.14: Computed Axial Tomography Scanning: (a) Scanner using parallel rays
measured with sensor arrays. (b) Rays organised in a fan shape used by medical scanners.

(fan-shaped for medical scanners) which are attenuated by the target object, and then
measured by a sensor array placed on the opposite side, as depicted in Fig. 3.14. The
ray emitters and detectors then rotate around the object to acquire samples of the object
from all orientations.

2. Image Deconvolution. Imaging aims to recover the intrinsic properties of a scene.
However these are not directly accessible in most cases, and the cameras capture
images which represent the result of filtering the image describing the scene with
a kernel function depending on the capturing device used. Model-based inversion
methods reverse the filtering operation to uncover the underlying scene properties.

An interesting example of model-based inversion can be found in 3D microscopy.
The problem that occurs here is that typically the specimens being analysed with a
microscope have several layers of depth, and only one can be in focus at one time
Vonesch and Unser (2008). But can we recover the layers that are out of focus? It turns
out that an out of focus blurry image is nothing but the original image filtered with a
microscope specific kernel, known as the point spread function (PSF) .

Generally speaking, a camera focused at different depths captures can be described by
a 3D PSF which generates a 3D stack of blurry images apart from one in-focus image:

I f (x, y, z) = (I ∗ PSF) (x, y, z) ,
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where I is the original 3D image stack and I f is the filtered stack. It is possible to
compute the in-focus image stack I with a simple and fast deblurring algorithm known
as nearest neighbor. This effectively computes the out of focus contribution of a blurry
image as the average of directly adjacent images in the stack. This method is very
imprecise.

The convolution operation can be expressed in the simple algebraic form

I f = PSF · I,

where I f and I are the original and filtered images in matrix form, and PSF is the matrix
form of the point spread function. Then if we measure an out of focus 3D stack Ĩ f ,
we can estimate the in-focus stack as min

I

���̃I f − PSF · I
���

2

2
,, which is the classical least

squares problem, where ‖·‖2
2 is the squared norm. This is also known as the inverse

filter method.

However this approach is not working well when the data is corrupted by noise. There
are two types of noise in an imaging system. The shot noise, caused by the irregularity
of the photon arrival times, is mostly prevalent at low levels of lighting. The read noise
is determined by the imperfection of the imaging sensor, affected by temperature and
gain (ISO value). The issue is addressed by adding a regularization term of the form

Î = arg min
I

���̃I f − PSF · I
���

2

2
+ λ ‖I‖1 ,

where λ is the regularization parameter and ‖I‖1 =
∑

i, j ,k ‖Ii, j ,k ‖ denotes the �1 norm.
This essentially creates a trade-off between minimising the error (left-hand term) and
generating images with a small number of components. This type of regularization
assumes that the original image is sparse, in the sense that it has many zero entries.
In microscopy, for example, this may be true in the case of a specimen with a dark
background, but it does not apply in most cases. What if all the entries of the 3D stack
are nonzero? A research direction called wavelet regularization shows that it is possible
to select a right basis function of wavelets, such that the coefficients of I in that basis
are sparse. We can then write the optimization problem as

Î = arg min
I

���̃I f − PSF · I
���

2

2
+ λ ‖WI‖1 ,

where λ is the regularization parameter, and WI denote the sparse set of wavelet
coefficients of the in-focus image stack I.

Another problem is that sometimes the PSF function is unknown, which makes it im-
possible to directly apply the inverse filter. This case can be addressed by implementing
an iterative inversion method, which reconstructs both the PSF and the best image
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solution. Iterative methods are very precise and noise robust, but these come at the cost
of a high computational complexity.

3. Seismic Imaging. In seismic inversion, the surface of the Earth is probed with a
seismic vibrator or a dynamite explosion in order to quantify the geophysical properties
of the underground layers of rock and fluid. One of the most widespread applications
is determining the properties of underground petroleum reservoirs.

Seismic inversion methods are based on a forwardmodelwhich can consist of classical
wave equations, predicting particle displacement or fluid pressure variation during
seismic propagation. The forward model is thus described by an equation of the form

s (t) = (w ∗ r) (t) ,

where s (t) is the synthetic seismic data, r (t) is the reflectivity function to be estimated
and w (t) is the source wavelet (also called the source signature), the shape of the
pressure pulse created by the source. One should not confuse themeaning of the wavelet
(referring to the waveform) in seismic inversion to the one from signal processing used
in the “Image Deconvolution” example above where wavelet refers to the wavelet
transform.

An iterative method is proposed to derive the reflectivity function in a robust and
precise way Cooke and Cant (2010). Initially, the reflectivity function is unknown,
and an estimate is provided by the user, which is expected to lead to poor results.
Knowing the waveform of the source wavelet, the model generates an initial estimate
of the synthetic seismic data s (t). By implementing partial derivatives of the forward
model to each of the model parameters, the proposed algorithm is able to compute
a new iteration of the reflectivity function r (t). The process continues until the root
mean squared error between the observed and synthetic seismic data is smaller than a
predefined tolerance:

err =
1
N

√∑N−1

n=0
|s (nT) − strue(nT)|2 < tol,

where T is the sampling time and N is the data size.

3.4 Data-driven Inversion Techniques

Take some scene property f and a set of camera measurements g. These two quantities are
related by

g = H [ f ] + ε,

where H [·] is a non-linear operator and ε is additive noise. Typical imaging problems
require us to solve the inverse problem, where we are given y, and need to solve for x via
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Figure 3.15: Traditional Programming vs. Machine Learning.

the inverse model H−1 [·]. In this section, we will study data-driven methods that help us
find an inverse mapping from y → x. These data-driven models search for patterns and
structure in large amounts of data. The patterns learned from this data are then generalized
to data that the model has never seen. In this section, we will see how neural networks,
specifically, are used to model this function mapping.

3.4.1 Machine Learning
In 1959, Arthur Samuel defined machine learning (ML) as the “field of study that gives
computers the ability to learn without being explicitly programmed.” He wrote the first
self-learning program, which played checkers by learning from experience (i.e., data). In
just 50 years, ML has evolved and become an integral part of our lives. For example, it
has been deployed in cancer diagnosis, drug discovery, face recognition, recommendation
systems (e.g., Netflix), linguistics, and more.

In traditional programming, we explicitly provide the computer with data and an algorithm
that directly yields an output. In machine learning, we allow the computer to learn patterns
and structure directly from the data itself. There are twomajor types of learning: supervised
and unsupervised learning. A supervised learning algorithm is fed both input data (X) and
output data (Y ), i.e., labels. From this, it is able to directly learn a functionmapping X → Y .
Unsupervised learning algorithms, on the other hand, are only given input data. From this
input data, unsupervised learning algorithms identify certain patterns and groupings within
the data. These groupings are then used to classify new unseen data. In machine learning,
there are three types of data: training data, testing data, and validation data. Training
data is used to train the ML model and learn a function mapping. Testing data is used
to evaluate the performance of the model, and validation data is used for hyperparameter
tuning.
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Figure 3.16: Examples for (a) Clustering, (b) Classification (KNN), and (c) Linear Regres-
sion. (a) Data is clustered into two groups. (b) A new data point can be classified either
into class A or class B. (c) Dots correspond to data points and the line corresponds to the
linear fit.

There are six major classes of machine learning: (1) Clustering, (2) Classification, (3)
Regression, (4) Deep Learning, (5) Dimensionality Reduction, (6) Reinforcement learning.
Our discussions will be restricted to (1)-(4), but the interested reader is directed to Ghodsi
(2006) and Sutton and Barto (2018) for details on (5) and (6), respectively.

• Clustering: Clustering is an example of an unsupervised learning algorithm. Each
data point can be represented as a point in some representation (or feature) space. The
clustering algorithm then groups data points together based on their proximity in this
representation space. A classic example is k-means clustering Likas et al. (2003).

• Classification: Classification aims to label some input data as one of n classes. For
example, a computer vision algorithm may want to classify input image data as either a
cat or dog. Classification algorithms typically work by searching for boundaries in feature
space that separate different classes, as depicted in Fig. 3.16bb. One trivial example of a
classification algorithm is k-nearest neighbors Sutton (2012).
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Figure 3.17: Support Vector Machine model classification. (a) Examples of non-optimal
hyperplane margins. (b) Optimal hyperplane separation.

• Regression: Regression is one of the fundamental supervised learning algorithms. Given
some unseen data, regression aims to predict some output variable given the value(s) of
the input variable(s). A key distinction between classification and regression is that
regression can take on continuous values, while classification allows for only discrete
outputs. The most basic example of this is first order linear regression, in which we aim
to relate the input and output as a linear function

y = B0 + B1x,

where B0 is the bias and B1 is the slope. Regression would solve for the values of B0 and
B1.

• Support Vector Machine (SVM): SVMs are a popular example of unsupervised learn-
ing. They can be used to solve both classification and regression problems. Given labeled
training data, SVMs find decision boundaries between different classes. For example,
let’s say we want to classify fruits as either apples and oranges. Each data point will be
represented in an n-dimensional feature space, where features could be shape and color
for example.

Fig. 3.17a shows the various types of margins which can be drawn to separate the two
classes, these margins may not always classify the new data point correctly. Fig. 3.17b
the support vectors and optimal hyperplane are displayed. Support vectors are data
points that are closer to the hyperplane and influence the position and orientation of
the hyperplane. Using these support vectors, we maximize the margin of the classifier.
Deleting the support vectors will change the position of the hyperplane.
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Figure 3.18: A non-linear model of a neuron.

3.4.2 Neural Networks and Deep Learning
Neural Networks are a machine learning model inspired by the pattern of neurons firing
in the human brain. These networks attempt to process information and data similar to
how our brains do. As a simplified model, neural networks contain several layers of
processing. Each layer contains several nodes, which are information processing units
meant to simulate the neurons. Nodes are densely interconnected between adjacent layers,
as shown in Fig. 3.21. Typically, these artificial neural networks contain anywhere between
dozens to millions of artificial neurons. This subset of machine learning is known as deep
learning, in which deep layers of neurons are used to compute complex non-linear inverse
function mappings.

Model of a Neuron: A neuron is an information processing unit that is fundamental to the
operation of a neural network. Fig. 3.18 shows the model of a neuron which forms the basis
for designing Neural Networks. Here we identify 3 basic elements of the neuronal model:

1. The connecting links (synapses) characterize the weights. Specifically, a signal xj at
the input of synapse of j connected to a neuron k is multiplied by the synaptic weight
wk , j .

2. An adder for summing the input signals, weighted by their respective synapses of
neurons.

3. An activation function (represented by σ) for limiting the amplitude of the output of a
neuron.

The model also includes an external bias bk . The bias is used to shift the boundary line, i.e.,
it has the effect of increasing or lowering the net input of the activation function, depending
on whether it is positive or negative as shown in Fig. 3.19.
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Figure 3.19: Affine transformation produced by the presence of bias.

The output of the neuron is calculated as follows:

vk = x0bk + x1wk1 + x2wk2 + · · · + xnwkn,

where vk is the local field and x1wk1, · · · , xnwkn constitute the weighted sum of input.

vk = x0bk +
n∑
j=1

xjwk j .

To incorporate the bias value, the zeroth neuron is held constant (x0 = 1) and the weight of
the zeroth neuron is the bias (wk0 = bk),

vk =

n∑
j=0

xjwk j .

vk is then input to a non-linear activation function. The final output is defined as below:

yk = σ (vk) .

Types of activation functions: The activation function decides whether a neuron should
be activated or not by calculating the weighted sum and further adding bias with it. The
purpose of the activation function is to introduce non-linearity into the output of a neuron.
The most commonly used activation functions are described below.

1. Sigmoid: The sigmoid function is defined by

σ (x) = 1
1 + e−x

.
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Figure 3.20: The graphical representation of various activation functions. (a) The sigmoid
activation function. (b) The tanh activation function. (c) The ReLU activation function.

It squashes the numbers to range [0,1]. Fig. 3.20a depicts the sigmoid function. As
we can see the sigmoid function is not zero centric and the saturated neurons kill the
gradient.

2. Tanh: The tanh function is defined by

tanh (x) = 2σ (x) − 1.

This function unlike the sigmoid function is zero centric. It also squashes the numbers
to range [−1,1]. It is represented in Fig. 3.20b.

3. ReLU: ReLU function is the most used activation function as it’s computationally very
efficient and it converges faster than tanh and sigmoid. The ReLU function is defined
by

σ (x) = max (0, x) .

It is represented in Fig. 3.20c.

Loss function: A loss function is the evaluation metric used to train a neural network. It
is a scalar value indicating the quality of the network’s output. In supervised learning, this
would constitute an output consistent with the ground truth output. The choice of a loss
function is directly related to the activation function used in the output layer of your neural
network. A few loss functions are mentioned below.

1. Mean Squared Error Loss: It is calculated as the average of the squared differences
between the predicted and actual values. The result is always positive regardless of the
sign of the predicted and actual values and a perfect value is 0.0.

2. Mean Absolute Error Loss: Absolute Error for each training example is the distance
between the predicted and the actual values, irrespective of the sign. Absolute Error is
also known as the �1 loss.
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3. Cross-Entropy or Log Loss: Each predicted probability is compared to the actual class
output value (0 or 1) and a score is calculated that penalizes the probability based on
the distance from the expected value. The penalty is logarithmic, offering a small score
for small differences (0.1 or 0.2) and enormous score for a large difference (0.9 or 1.0).

Regularization: The goal of machine learning is to have a model learn to generalize
unseen data. When dealing with small datasets, however, these models may overfit to the
dataset. To prevent this overfitting, we can impose some restriction on the structure of
the network. Specifically, regularization is a modification made to the learning algorithm
to reduce its generalization error, even if it increases training error. One straightforward
way to regularize is to constantly evaluate the training and validation loss on each training
iteration, and return the model with the lowest validation error.

A simple to implement type of regularization is to modify the cost function with a parameter
norm penalty. This penalty is usually denoted asΩ (θ). A common type of parameter norm
regularization is to penalize the size of weights. We describe 2 parameter regularizations
below.

1. �2 Regularization: Ifw are themodel parameters to be regularized, then �2 regularization
penalty can be defined as:

Ω (θ) = ‖w‖2
2 =

1
2

wTw.

�2 regularization causes the weights w to have a small norm. Large weights are often
undesirable because then small changes in the input would cause large changes in output,
resulting in numerical instability.

2. �1 Regularization: �1 regularization defines the parameter norm penalty as:

Ω (θ) = ‖w‖1 =
∑
i

|wi |.

Intuitively, this form of regularization encourages the weights to be sparse, i.e. only a
few weights will be non-zero.

3. Dropout is a regularization method in which the output of certain nodes are randomly
ignored or “dropped out” (i.e., set to zero). This helps the network from overtraining
certain nodes over others. Dropout could also be thought of as a way to train different
network architectures simultaneously, since the number of nodes and layers will change
each iteration.

Different Types of Networks: The block diagram in Fig. 3.18 provides a functional
description of the various elements that constitute the model of an artificial neuron. We
may simplify the appearance of the model by using the idea of signal flow graphs. We will
talk about the various architectures that are present in NNs below.
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Figure 3.22: Recurrent network with no hidden neurons and no self-feedback loops.

1. Multilayer feedforward network: In a single-layer network the input layer projects the
input on the output layer of neurons. The output layer of neurons is not counted as
no computation is performed. The difference between a single-layer and multilayer
network is the existence of hidden layers. The added depth of hidden layers enables
deeper processing of the data. One interpretation of these added hidden layers is that
they act as feature extractors before yielding an output. Fig. 3.21 illustrates a multilayer
fully connected feedforward network with one hidden layer and one output layer.
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Figure 3.23: A simple model of a perceptron.

2. Recurrent networks: A recurrent network distinguishes itself from a feedforward net-
work in that it has at least one feedback loop. The presence of a feedback loop has a
profound impact on the learning capability of the network and its performance. In a
traditional neural network we assume that all inputs (and outputs) are independent of
each other, but sometimes this is an ill-posed assumption. For example, consecutive
frames in a video are highly correlated due to their temporal relationship. RNNs are
called recurrent because they perform the same task for every element of a sequence,
with the output being dependent on the previous computations. Another way to think
about RNNs is that they have a “memory” which captures information about what has
been calculated so far. Fig. 3.22 shows a recurrent network with no hidden layers.

Perceptron: The concept of a perceptron was originally proposed by Frank Rosenblatt in
1943, and was later refined by Minsky and Papert in 1969. A perceptron is simply a binary
linear classifier. The goal of a perceptron is to correctly classify the set of inputs into 2
classes. The perceptron algorithm automatically learns the optimal weight coefficients for
the input signals. The input features are then multiplied with these weights to determine
if a neuron fires or not. The perceptron receives multiple input signals, and if the sum of
the input signals exceeds a certain threshold, it either outputs a signal or does not return
an output. In the context of supervised learning and classification, this can then be used to
predict the class of a sample. Fig. 3.23 illustrates the simple architecture of the perceptron.

The perceptron function is defined as follows

f (x) =
∑
i

xiwi,

where f (x) is the output, xi is the input and wi is the weight for the particular instance of
node i.
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(a)
(b)

Figure 3.24: A simple example to demonstrate the working of the backpropagation al-
gorithm. (a) The function represented using signal flow graph rules. (b) The signal flow
graph with backpropagation values updated. (The values in green are the input values, the
values in red are the values calculated using the backpropagation algorithm).

Backpropagation algorithm: Backpropagation is the most fundamental building block
of neural network training. Backpropogation operates on the chain rule principle. The
basic idea is to efficiently calculate the partial derivative of an approximating function
F (w,x) realized by the network with respect to all the elements of the adjustable weight
vector w for a given value of input vector x. In simple terms, after each forward pass
through a network, backpropagation performs a backward pass while adjusting the model’s
parameters (weights and biases). This is best explained by example. Let’s say x = −2,
y = 5, and z = −4 for the following equation

f (x, y, z) = (x + y) · z.

Fig. 3.24a shows the computational graph for this, and breaks the equation into intermediate
variables.

q = x + y,
∂q
∂x
= 1,

∂q
∂y
= 1,

f = qz,
∂ f
∂q
= z,

∂ f
∂z
= q.

We want to calculate the below partial differentials
∂ f
∂x
,
∂ f
∂y
,
∂ f
∂z
.

We can make the following deductions from Fig. 3.24a,
∂ f
∂x
= 1,

∂ f
∂y
= 3,

∂ f
∂z
= −4.

Using the chain rule to find the partial derivative of f with respect to y,
∂ f
∂y
=
∂ f
∂q
∂q
∂y
,

∂ f
∂y
= −4.
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Using the chain rule again to calculate the partial derivative of f with respect to x,
∂ f
∂x
=
∂ f
∂q
∂q
∂x
,

∂ f
∂x
= −4.

Fig. 3.24b represents the output after the first round of backpropagation. Using these
calculated derivatives (gradients in practice), we can update the weights to reduce the value
of the loss function. These weights are updated repeatedly over multiple iterations of
training until some stopping criteria is met (usually number of iterations or performance
threshold).

3.4.3 Convolutional Neural Networks and Computer Vision
Computer vision is a growing field today, with applications in autonomous vehicles,
industrial automation, digital pathology, and more. Classic tasks in computer vision
include object detection, segmentation, and tracking Comaniciu et al. (2001). Computer
vision techniques have also been applied to tasks like monocular depth estimation Laina
et al. (2016); Liu et al. (2015); Eigen and Fergus (2015), phase recovery Rivenson et al.
(2018), and even optical neural networks Lin et al. (2018); Chang et al. (2018). State
of the art methods in these tasks typically incorporate a Convolutional Neural Network
(CNN). CNNs are particularly important in computer vision since they leverage 2D spatial
features of images. These networks typically contain convolution layers, which convolves
images with 2D or 3D convolution filters. CNNs have also been used in Natural Language
Processing (NLP) and speech recognition. We will now go through a few building blocks
of a CNN.

Types of layers: There are various types of layers that are used to build CNNs.

1. CONV layer (convolution) performs a 2D convolution of the input image with a filter.
All entries in the filter are learnable parameters. The filter height and width is small
relative to size of the image, but extends through the full depth of the input volume.
The convolution operator accounts for interdependencies between adjacent pixels.

2. POOL layer performs a downsampling operation along the spatial dimensions (width,
height). It is common to periodically insert a pooling layer in-between successiveCONV
layers in a ConvNet architecture. Its function is to progressively reduce the spatial
dimensions of the representation to reduce the number of parameters and computation in
the network, and hence to also control overfitting. The pooling operator also introduces
spatial invariance into the network.
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Figure 3.25: LeNet Architecture.

3. FC (fully-connected) layer is typically the last layer of a network performing classifica-
tion. It has n nodes, where n is the number of classes. This serves as the output layer,
and each node contains a score for each class. The class with the highest score is what
the network will choose as the classified object.

CNN Architectures: There are many popular CNN architectures, many of them gained
recognition by achieving good results. A few of them are mentioned below.

1. LeNet-5: This 7-layer CNN classified digits, digitized 32×32 pixel grayscale input
images. it was used by several banks to recognize the hand-written numbers on checks.
LeNet-5 architecture Lecun et al. (1998) consists of two sets of convolutional and
average pooling layers, followed by a flattening convolutional layer, then two fully-
connected layers, and finally a softmax classifier.

In the first layer, the input for LeNet-5 is a 32 × 32 grayscale image that passes through
the first convolutional layer with 6 feature maps or filters having size 5 × 5 and a stride
of one. The image dimensions change from 32 × 32 × 1 to 28 × 28 × 6. Then the
LeNet-5 applies an average pooling layer or subsampling layer with a filter size 2 × 2
and a stride of two. The resulting image dimensions will be reduced to 14 × 14 × 6.
Next, there is a second convolutional layer with 16 feature maps having size 5 × 5 and
a stride of 1. In this layer, only 10 out of 16 feature maps are connected to 6 feature
maps of the previous layer. The main reason is to break the symmetry in the network
and keep the number of connections within reasonable bounds. That’s why the number
of training parameters in these layers is 1516 instead of 2400 and similarly, the number
of connections is 151600 instead of 240000. The fourth layer (S4) is again an average
pooling layer with filter size 2× 2 and a stride of 2. This layer is the same as the second
layer (S2) except it has 16 feature maps so the output will be reduced to 5× 5× 16. The
fifth layer (C5) is a fully connected convolutional layer with 120 feature maps each of
size 1 × 1. Each of the 120 units in C5 is connected to all the 400 nodes (5 × 5 × 16) in
the fourth layer S4. The sixth layer is a fully connected layer (F6) with 84 units. Finally,
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Figure 3.26: VGG16 Architecture.

Figure 3.27: Fast R-CNN Architecture Girshick (2015).

there is a fully connected softmax output layer ŷ with 10 possible values corresponding
to the digits from 0 to 9.

2. VGG16: As the name suggests, VGG16 has 16 layers. This architecture is from the
Visual Geometry Group at Oxford Simonyan and Zisserman (2014). The VGG-16
network is characterized by 3 × 3 convolutional layers stacked on top of each other in
increasing depth. Reducing the volume is handled bymax-pooling. Two fully connected
layers each with 4096 nodes, followed by another fully connected layer of 1000 nodes.
Then this is followed by a soft-max classifier. In VGG-16 the blocks are of the same
filter size and are applied multiple times to extract more complex and representative
features. This concept of blocks became common in the networks developed after VGG.
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(a) (b)

Figure 3.28: The architecture of Variational Autoencoder. (a) The encoder. (b) The
decoder.

3. Fast Region-based Convolutional Network: A Fast R-CNN network Girshick (2015)
takes as input an entire image and a set of object proposals. The network first processes
the whole image with several convolutional and max pooling layers to produce a conv
feature map. Then, for each object proposal a region of interest (RoI) pooling layer
extracts a fixed-length feature vector from the featuremap. Each feature vector is fed into
a sequence of fully connected layers that finally branch into two sibling output layers:
one that produces softmax probability estimates over K object classes plus a catch-all
“background” class and another layer that outputs four real-valued numbers for each of
the K object classes (per-class bounding-box regression offsets). Training all network
weights with back-propagation is an important capability of Fast R-CNN. In Fast RCNN
training, stochastic gradient descent mini batches are sampled hierarchically, first by
sampling N images and then by sampling R/N RoIs from each image. Critically, RoIs
from the same image share computation and memory in the forward and backward
passes. Making N small decreases mini-batch computation.

4. Variational Autoencoders (VAE): A lot of techniques in machine learning try to com-
press the dimensionality of the data into a smaller space. Autoencoders work on the
same principle. The high-dimensional input is passed through a neural network to
obtain a compressed output. It achieves this with 2 principal components. The first
component, also known as an encoder consists of a bunch of layers (can be fully con-
nected or convolutional layers) that take the input and try to compress it to a smaller
representation. The smaller representation is known as bottleneck. The second com-
ponent consists of reconstructing the input from the bottleneck. The last function of
training the autoencoder is to look at the reconstructed version at the end of the decoder
and compute the reconstruction loss with respect to the input. This method can be used
for denoising images, neural inpainting(remove a small part of the image and ask the
neural network to reconstruct the complete input). In autoencoders, the input is mapped
to a fixed vector, but in variational autoencoders Kingma and Welling (2019), the input
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Figure 3.29: The reparameterization trick.

is mapped to a distribution. So the normal bottleneck vector C is replaced by 2 separate
vectors, one representing the mean of the distribution and the other one representing
the standard deviation of the distribution. Hammernik et al. (2018) use a VAE to learn
the reconstruction of MRI data.

The loss function for the above architecture consists of two terms:
Loss = Reconstruction loss + KL divergence

log pθ (x) = Ez log p (x | z) − DKL (q (z | x) | |p (x)) .

We notice that there is a sampling operation between the encoder and decoder. The
node has to take a sample from a distribution and feed it through the decoder. The
problem in VAE is that we can’t run backpropagation or we can’t push gradients
through the sampling node. To run the gradients through the entire network, we use a
reparameterization trick. If we look at the latent vector that we are sampling, the vector
can be a sum of fixed µ (learning parameter) and γ (learning parameter) multiplied by
ε where ε ∼ N (0,1).

z = µ + γ � ε.

With the reparameterization trick, we can now backpropagate to calculate the gradient
with respect to all parameters.

5. Generative Adversarial Network: GANs don’t require any probabilistic learning unlike
the other methods. It has two networks: a generator network and a discriminator
that compete with each other. Conceptually, the GAN Goodfellow et al. (2014) can
be thought of as a game between two players, the generator and discriminator. The
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Figure 3.30: The generative adversarial network.

generator is a generative model and performs mapping x̂ = G (z), where z is some
random noise. It’s goal is to produce samples, x̂ from the distribution of the training
data p (x). The discriminator is the generator’s opponent, and performs a mapping
D (x) ∈ (0,1). It’s goal is to look at samples and determine if they are real samples or
synthetic samples from the generator. The generator is trained to fool the discriminator,
and thus the two can be viewed as adversaries. Let us define the discriminator’s loss
function. We will let pdata (x) denote the data distribution and pmodel (x) denote the
distribution of samples from the generator. Then the discriminator loss is defined as:

L(D) = −1
2
Ex∼pdata logD (x) − 1

2
Ez log (1 −D (G (z))) .

The goal of the discriminator is to minimize the loss. The loss will be zero D (x) = 1
for all x ∼ pdata and D

(̂
x
)
= 0 for all x̂ ∼ pmodel. A remarkable example of a GAN can

be seen at , where a GAN generates a highly realistic image of a face of a person that
doesn’t actually exist.

Transfer learning and Fine-tuning: Researchers in this field often make pre-trained
networks available open-source to the computer vision community. The availability of
these pre-trained networks is particularly useful for other researchers, as training millions
of parameters can be time consuming and ill-posed with insufficient data and limited
computing power. In practice, one can instead use the pre-trained network weights as a
starting point for their application. There are two major transfer learning scenarios:

• Feature Extraction: This is done by taking a pre-trained network, removing the last fully-
connected layer, and treating the remainder of the network as a feature extractor for the
new dataset. A linear classifier (e.g., Linear SVM or Softmax classifier) is then trained,
with the extracted features as input.

• Fine-tuning: The second strategy is to fine-tune the pre-trained network by using the
network as a starting point for the training. The network can be fine-tuned by continuing
training on the new dataset. It is possible to either fine-tune all the layers of the network,
or keep some layers constant and fine-tune the others.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

110 Chapter 3 Computational Toolkit

3.5 Hybrid Inversion Techniques (Data-Driven + Model-Based)

Up to this point, let’s revisit the benefits and limitations of inversion using data-driven
approaches versus physical model-based approaches. Model-based inversion is highly
interpretable and constrains the solution to be physically plausible. However, these models
are limited by human bias (introduced by a partial understanding of the physical phenomena)
and are not robust to noise. On the other hand, data-driven models are able to learn arbitrary
function mappings X → Y . However, these models lead to uninterpretable results with
an unbounded solution space encompassing physically improbable solutions. They also
require large amounts of data tomeaningfully extract patterns and structure from the physical
phenomena. By systematically integrating these two approaches, we are able to overcome
deficiencies in both methods. In Willard et al. (2020), the authors provide an excellent
survey of techniques to meaningfully integrate physics with data-driven approaches, which
we will summarize below.

3.5.1 Physics-Based Regularization
As we discussed earlier, the goal of regularization in iterative models is to discourage
solutions that don’t satisfy some physical or mathematical property. In the context of
data-driven models, regularization entails two terms in the loss function: (1) a data fidelity
term and (2) a physics-based regularizer. A physical regularizer here aims to mitigate
reconstruction errors by incorporating even just a partial understanding of the underlying
physical phenomena.

f̂ = arg min
f

‖g −H[ f ]‖2 + αΦ ( f ) ,

where H is the forward operator, f is the unknown property, Φ is some prior physical
knowledge acting as a regularizer, and α is a hyperparameter balancing the tradeoff be-
tween data fidelity and physical plausibility. For example, Goy et al. (2018) solves the phase
retrieval problem in low-light conditions (where shot noise is prevalent) by incorporating a
regularization term on the possible values for phase, based on the condition that the object
modulates only the phase, not the magnitude. Fig. 3.31 shows the performance improve-
ment of a physics-based neural network over standard deep learning methods (end-to-end),
iterative methods (Gerchberg-Saxton), and inverse model projections (approximant).

3.5.2 Physics-Guided Network Initialization
The weights of a neural network are typically randomly initialized. Since neural networks
learn a nonlinear function mapping, the initialization of the weights often play a critical
role in helping the network converge to an optimal loss minima, rather than a local minima.
One way to improve network convergence is by training the network to initialize based on
the results from a physics-based model. This would operate based on a transfer learning
principle. To do this, first synthetic data is developed using a physics-based forward model.
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Figure 3.31: Phase retrieval under dominant effects of shot noise is shown to be more
effective under a physics-based network, compared to standard deep learning, iterative, or
model-based approaches Goy et al. (2018).
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A neural network can then learn from this physics-based simulation data. After training,
this will be used as a pre-trained model. The network trained on simulation data will then
be used as an initialization point for the network to be trained on real data. Such a technique
is also useful when the amount of experimental data available is limited.

3.5.3 Physics-Based Network Architectures
Neural networks often learn weights and biases in an uninterpretable manner, making it
difficult to actually know if the network is learning the same physics that humans understand.
One approach to circumvent this is by directly manipulating layer connections based on
the variable dependencies between different parameters. For example, the use of a CNN
inherently allows the assumption that objects in an image are scale, translation, and rotation
invariant. Meanwhile, the use of a RNN encodes a time-invariant structure. For example,
Sturmfels et al. (2018) insert a layer at the beginning of aCNN to spatially discretize different
regions of the brain. This enables the network to learn different parameters for different
parts of the brain. This is particularly important for predicting age from neuroimages, since
different regions of the brain behave differently at different stages of life.

3.5.4 Hybrid Models
An easy way to combine information from physics and data is by feeding the output of a
physics-based model as input to a deep learning model. One could think of this as feeding
additional features of the data to the network. In Chapter 7, we will see how polarization
cues can be leveraged to obtain the shape of an object. In the context of a hybrid model, we
can see how the shape estimates from a polarization-based model can be fed as input to a
CNN, where ambiguities from the physics model can be corrected. In such a situation, the
model-based shape estimate and the polarization images can be fed as input to the network.
Another such hybrid model is a residual model, where the network learns the errors, or
residuals, between the physics model and the observed data. Such a model is able to learn
from the deficiencies of the physical model and make corrections to it accordingly. The
disadvantage of such a model lies in its inability to enforce any physical constraint, the way
that a physics-based architecture or loss function would.

3.5.5 Optical Neural Networks
There have been some interesting works on optical implementations of such deep learning
modalities. The layers of the neural network are physically constructed using diffractive
materials, in comparison to digital layers used in traditional neural networks. Each point
in the layer can be interpreted as a neuron. This follows from Huygen-Fresnel’s principle,
in which every point in a diffractive material can be treated as a point source. Neurons
in subsequent layers interact with each other, and modulate the phase and amplitude of
the light based on their complex transmission/reflectance coefficients. The phase and
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Figure 3.32: Deep Diffractive Neural Network. (a) Each point on the diffractive layers
behaves as a point source, in accordance with Huygen-Fresnel’s principle. (b) Light
emanating froma "5" is input into the classifier diffractive network. The light is subsequently
propagated through the layers, and a detector array is used to classify the digits from 0-9
Lin et al. (2018).

amplitude of each neuron within a layer can be trained digitally via backpropogation. Once
these parameters are determined for a given task (e.g. MNIST digit classification), the
individual layers can be fabricated. This type of network is termed a deep diffractive neural
network ans is illustrated in Fig. 3.32 Lin et al. (2018). Such diffractive networks are still
being explored in the imaging community, with research being done into understanding
the information capacity of such networks Kulce et al. (2021) as well as improving their
performance via methods such as diffractive ensemble learning Rahman et al. (2021).

Optical neural networks can also be used to reduce the burden on digital computation, by
performing some computations optically. For example, one can insert a phase mask in
front of the camera to act as an optical correlator that performs template matching. This
layer acts as an optical pre-processor, making it easier for a digital CNN to achieve high
classification accuracy with reduced training time Chang et al. (2018).

Chapter Appendix: Notations

Notation Description

f (t) Continuous-time function

f [m] Discrete-time function
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L Linear system

fτ (t) Signal f (t) delayed by τ
δ (t) Dirac delta distribution/impulse

ω Angular frequency

fω (t) Eigenfunction of linear time-invariant (LTI) system

λω Eigenvalue of an LTI system

f̂ (ω) Fourier transform of function f (t)
g∗ (t) Complex conjugate of function g (t)
T Sampling interval

Tp Period of a function in time

XTp (t) Dirac comb with inter-tooth distance Tp
BΩ Set of Bandlimited functions with maximum frequency Ω

Ω0 Period of a function in frequency

‖x‖2 �2-norm of a vector

‖ f (t) ‖2 L2-norm of a function

〈x, y〉 Inner product of two vectors x and y

1[a ,b] Vector of all ones between [a, b]
p (s, φ) Radon projection

d (x, y) Object distribution

I Image

I f Filtered image

PSF Point spread function

W Wavelet basis

‖x‖1 �1-norm of a vector x

DKL (q | |p) Kullback–Leibler divergence between probability densities p and q

Ez Expectation with respect to random variable z

G Generator network

D Discriminator network
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Exercises

1. Computing Fourier Transforms.
Many of the imaging problems require computation of the Fourier domain representation
of a function. The goal of this warm-up exercise is to compute basic Fourier transforms
that will be used later in the book.

a) Sparse Signals.
Compute the Fourier transform of the continuous-time sparse signal given by,

s (t) =
K−1∑
k=0
Γkδ (t − tk).

Aswewill see in Chapter 5, here Γk and tk are attributed to reflectivity and time-delays
in the context of time-resolved imaging.

b) Exponential Functions.
Compute the Fourier transform of the transfer function given by, ,

s (t) = ρe− t−τ
λ 1t�τ (t) .

In the context of fluorescence lifetime imaging which is an established imaging
technique in life sciences, ρ and λ take the meanings of emission coefficient and
lifetime, respectively and τ refers to the delay.

c) Tensor Spline Functions.
In the areas of computer graphics and signal/image processing, splines are frequently
used for interpolation related tasks. A B-spline of order zero is defined by a box-
function or,

β0 (t) =



1 |t | < 1
2

1
2 t = 1

2
0 t > 1

2

.

Higher order splines are polynomial functions defined by recursive convolution of
the basic spline,

βN (t) = β0 ∗ β0 ∗ · · · β0
︸�������������︷︷�������������︸
N+1 convolutions

(t) .

Show that in closed form, one can directly write,

βN (t) = 1
N!

N+1∑
n=0

(
N + 1

n

)
(−1)n

(
t − n +

N + 1
2

)n
+
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where (t)n+ = tn1t�0 (t).

Multi-dimensional (tensor) splines in dimension M can be simply written as a sepa-
rable basis function of the form,

βN (t) =
∏M

m=1
βN (tm).

Show that its Fourier transform is,

β̂N (ω) =
M∏
m=1

(
sin

(ωm

2
)

(ωm

2
)

)N+1

.

2. Weighted Least Squares Inversion.
When working with tall and fat matrices, we have seen that inversion amounts to solving
a least squares optimization problem. In practice, it may be of interest to minimize a
weighted version of the cost function. Here, the weights refer to a diagonal matrix of
the form,

W =



w1

w2
. . .

wN



.

a) Overdetermined System of Equations.
In the case of overdetermined system, we have seen that the cost function is given by
(3.18), that is, C (f) = ‖g − Hf‖2

2. For the weighted least squares problem, minimize
the cost function,

CW (f) =
���
√

W (g − Hf)
���

2

2
, where

√
W =



√
w1

√
w2

. . .
√
wN


and show that the optimal solution is given by,

f� =
(
H�WH

)−1H�Wg.

b) Underdetermined System of Equations.
Extending the above example for the case of an underdetermined system, minimize
the weighted energy corresponding to (3.20) and show that the optimal solution to
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the problem,
min

f

���
√

Wf
���

2

2
such that g = Hf

is given by,
f� =W−1H�

(
HW−1H�

)−1
g.

3. Sparse Recovery Beyond Soft-Thresholding.
In the context of sparse recovery, the cost function in (3.27) can be generalized in the
sense that the �1–norm can be replaced by a point-wise non-linearity defined by function
ξ leading to,

Cλ (f) = ‖g − f‖2
2 + λξ (f) ,

provided that ξ is differentiable. The core idea is to use a ξ that mimics the �1–norm.

a) Explain why do we need that ξ is differentiable?

b) Suppose that we define,

ξ (f) = 1
α

log (1 + α |f |) , α > 0.

For one and two-dimensional f , plot ξ (f) and compare it with the �1–norm of f.
In analogy to the minimizer of (3.27) given by, f� = softλ(g), what is the minimizer
of the cost function with ξ (f) defined above?

4. Smoothing and Trend Filtering
Data smoothing is one of the most common place tasks in signal processing and com-
putational imaging. Smoothing related tasks work with discrete derivatives of the data
and for this purpose, let us define the first-order forward difference matrix,

D1
N =



−1 +1
−1 +1

. . .
. . .

−1 +1



∈ R(N−1)×N

which when acting on a vector f ∈ RN produces a vector
(
D1

N f
)
∈ RN−1 where[

D1
N f

]
n
= f [n + 1] − f [n].

a) Verify that the K th-order finite difference is given by,

DK
N = D1

N−K+1DK−1
N ∈ R(N−K)×N , K > 1.
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b) Smoothing Filter.
For any f ∈ RN , by minimizing the cost function,

Cλ (f) = ‖g − Hf‖2
2 + λ

��D2
N f

��2
2

obtain the solution for optimal f. Generally, this problem is known as the Tikhonov
Regularization problem when the difference matrix is replaced by a generic matrix.

Show that DK
N f can be written as a convolution filter. Based on this, devise a fast

Fourier domain filtering algorithm.

For a vector f arising from a smooth function, suppose that we replace fnoise = f + z
where z is vector drawn from a independent and identically distributed (i.i.d) Gaussian
distribution with variance parameter σ. What is the effect of changing λ for a given
σ?

c) Total Variation Minimization.
For piecewise constant data, one typically minimizes the const function,

Cλ (f) = ‖g − f‖2
2 + λ

��D1
N f

��
�1
.

Here, the term,
��D1

N f
��
�1
=

N−1∑
n=1

| f [n + 1] − f [n]|

is known as the Total Variation of f. By resorting to one of the references on thresh-
olding or majorization-minimzation approaches, design an algorithm to minimize
Cλ (f).
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4 Spatially Coded Imaging

Consider the case where objects in the scene we want to capture are placed at different
distances from the camera, so that it is not possible to have them all in focus. Alternatively,
various applications might require estimating the depths in various points of the scene.
Solving these tasks with conventional imaging setups is typically challenging.

In this chapter, our goal is to study the key ideas at the heart of spatially coded imaging
(SCI) . This refers to a flexible alternative to the conventional imaging setup where spatial
imaging parameters such as the aperture, sensor and the illumination can be engineered
to enhance the quality of the imaging system. For example, conventional imaging uses a
spherical aperture of variable sizes. Allowing the aperture to have more general shapes
endows the imaging device with additional capabilities, such as measuring the scene depth
or extending the depth of field. The sensors can be placed in various configurations
depending on their sensitivity to different parts of the light spectrum. For applications that
impose restrictions on the amount of data transmitted, compressive sensing techniques can
be used in conjunction with sensors of reduced size, down to even single pixel sensors.

From the computational imaging perspective, "coding" refers to applying specific tailoring
of the spatial degrees-of-freedom that lead to spatially encoded measurements. From the
“encoded” measurements, the image is then recovered using mathematical algorithms.
In the last decade or so, several compelling applications have emerged where the co-
design of engineered imaging parameters and recovery algorithms have led to new imaging
capabilities, for example, depth imaging and light field capture from a single, spatially
coded image.

This chapter covers three well-known spatial coding modalities: aperture, sensors, and
illumination. A diagram giving a general intuition on the functioning of these modalities
is in Fig. 4.1.
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Figure 4.1: Three Main Categories of Spatially Coded Imaging Modalities. The illumi-
nation is typically coded by obstructing partially or completely the light from a projector
in a predefined pattern. A traditional lens typically integrates all light from a point in the
scene. A coded aperture selects light arriving from a number of angles. The sensors can
be coded by arranging pixels sensitive to certain wavelengths. A beam splitter can be used
to project the incoming light beam on several sensors with modified parameters.

4.1 Coding the Aperture

In Chapter 2, we have studied the foundational principles of the image formation model of
a basic imaging system. In this context, each imaging system has a point spread function
(PSF) that characterizes the performance of the imaging method. The simplest form of
the PSF is attributed to the pin-hole camera. However, the pin-hole imaging model suffers
from low-throughput of light and hence low signal-to-noise ratio as all but a pin-hole sized
cavity allows for passage of light. From both physical and mathematical perspectives, we
can think of the pin-hole model to be a limiting case of the finite aperture model. In this
analogy, coded aperture imaging can be seen as a trade-off between the two extremes; the
pin-hole model on the one hand and the finite aperture model on the other hand. Before
discussing the various formats of coded aperture imaging, we start with an explanation
of the intuition behind what makes the coded aperture imaging a flexible and desirable
imaging alternative.

4.1.1 Physical Perspective
Let us begin by considering the physical instantiation of an aperture. An aperture is a
hole that lets light pass through. A finite aperture is a hole of some finite radius, which
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Figure 4.2: Four Aperture Sizes and Their Corresponding f-stop Values.
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Figure 4.3: Three Main Types of Apertures and Their Fourier Domain Characteristics.

collapses to a pin-hole as the lens radius shrinks to an infinitesimally small quantity. This
limiting behaviour is best explained when observing the depth-of-field effect with varying
lens apertures. This is shown in Fig. 4.2 below in terms of the f-stop.

4.1.2 Mathematical Perspective
When designing computational imaging centric systems, algorithms play a key role in the
process of image formation and recovery. If we consider a one-dimensional lens as an
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abstraction of the optical system, then, the pin-hole PSF maps to the Dirac’s Delta function
while a finite aperture lens with aperture radius r0 maps to a box function of length 2r0.
This is shown in Fig. 4.3. A coded aperture is a more general setup consisting of multiple
aperture openings, which map to box functions with different widths and delays in the
time-domain, as shown in Fig. 4.3. As a consequence, we obtain sinc functions of different
widths and modulations. Coded aperture design is neither a fully open lens, nor a pin-hole
but something between the two. For example, it may consist of multiple finite apertures
at different locations typically carefully chosen to optimize a certain design criterion. As
shown in Fig. 4.3, the advantage of the coding scheme is best explained in the Fourier
domain.

4.1.3 Non-Coded Aperture
In this case, the aperture maps to a one-dimensional box function. The Fourier transform
of this one-dimensional box function is the sinc function. As can be seen from the figure,
the sinc function periodically touches zeros which leads to a permanent loss of information
at these frequencies resulting in blurred images.

4.1.4 Pin-Hole
As we have seen in a previous chapter, the pinhole camera is a box with a tiny hole on one
side allowing light to be projected on the opposite wall, therefore creating an image on the
projection plane. Despite having a measurable size in practice, the pinhole can be modeled
as a Dirac Delta function due to its small radius.

The Fourier transform of this function is a constant function. Hence, there is no loss of
information in the case of a pinhole camera. That said, as we have already discussed,
this setting suffers from a low throughput of light. Additionally, as we discussed in the
Imaging Toolkit Chapter, if the pinhole diameter is close to the light wavelength, the effect
of diffraction is observed, causing distortions in the image.

To avoid diffraction and increase the amount of light passing through the aperture, one
could consider simply increasing the diameter of the pinhole. As it is depicted in Fig. 4.4,
this leads to several points in the scene projected onto the same point on the sensor, causing
a blurry effect.

In conclusion, a pinhole camera is not able to avoid all these problems at once. A lens
integrates the light rays and bends them to converge onto one point. Therefore, by keeping
the object in focus, the lens produces sharp and bright images, while also not suffering from
diffraction. As we will see in the next subsection, a lens allows choosing a wide range of
aperture shapes with significantly less blur than pinhole cameras.
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Figure 4.4: The Pinhole Camera with a Large Aperture. When the aperture size is
increased, it can no longer be approximated with a Dirac Delta function. As a consequence,
different points in the scene are projected onto the same point in the projection plane,
leading to a blurry image.

4.1.5 Coded Aperture
The distinct advantage of a coded aperture, consisting of multiple aperture openings, is that
the zeros of one sinc function are compensated by the non-zero values of a sinc function
with a different width. Hence, for a large range of frequencies (compared to the case of
non-coded aperture), we have no loss of information. However, in recovering information
or images back from such a coded aperture, the exact form of the Fourier transform is
required to be known so that its effect can be undone in the recovery phase.

Using coded apertures for image and depth capture: Although the idea of coding
aperture dates back to the pioneering efforts in X-ray astronomy (circa 1965), in recent
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years, Levin and co-workers in Levin et al. (2007) were the first ones to demonstrate
that both conventional photograph and the corresponding depth map can be recovered by
coding the aperture of a consumer grade camera. The depth map is an image that contains
at every pixel the distance to the scene from the view point. Their approach combines
the idea of Depth from Defocus or DFD with aperture coding. DFD based methods for
estimating 3D scene geometry exploit the optical nature of the image formation process.
In particular, points that lie on the focal plane map to the sensor, creating a sharp image.
Points away from the focal plane create a defocused image where the amount of defocus
depends on how far away a point is from the focal plane. Hence, by knowing the amount
of blur produced by a scene point in the image, one can estimate the depth of the same
point. Clearly, the blur introduced in the process is a function of the aperture or the PSF
of the optical system. To this end, Levin and co-workers in Levin et al. (2007) introduced
coded aperture imaging where the coded aperture was carefully designed in a way that it
is sensitive to different depths and hence, one can discern depth information by solving
the de-blurring or the do-convolution problem. Shedligeri et al. (2017) use a data-driven
approach to design the coded aperture for depth recovery.

Using coded exposure – coding the aperture in time: Capturing objects in motion is
a challenging task, often leading in images affected by motion blur. This effect can be
addressed using deblurring algorithms, but it should be noted that deblurring in itself is
an ill-posed problem for images captured with traditional architectures. As discussed in
Subsection 3.2.1, this process can be described mathematically by a convolution between
the original image and a boxcar function, which, in the frequency domain, is translated to
a multiplication of the original image spectrum with a sinc function. The information at
every frequency where the sinc crosses 0 is lost, and high frequencies are also dampened
as the sinc amplitude decreases.

To make the problem well-posed, a change in hardware architecture is necessary. Fig. 4.3
shows how the aperture can be coded with multiple openings at once. But what if we
generate multiple openings at different moments in time? This led to the idea of coded
exposure, also named “fluttered shutter” Raskar et al. (2006). As the name suggests, this
concept involves “fluttering” the shutter of the camera in a predefined sequence, which is
often chosen as a pseudo-random binary pattern. This preserves the high-frequency spatial
details in the image and leads to an improved result, as depicted in Fig. 4.5. Mathematically,
the fluttered shutter approach allows modeling the aperture as several boxcar functions,
which guarantee that their zeros in the frequency domain do not coincide. This means
that the frequencies where one sinc cancels are covered by other sinc functions, and no
frequencies are lost.

Thefluttered shutter is a very promising technique that proved to be useful in other fields such
as microscopy, where fluorescence imaging of moving cells has a limited time resolution.
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(a) Blurred Image

(b) Rectified Crop

(c) Deblurred Image

Figure 4.5: Coded Exposure for Objects in Motion. (a) Original blurred image, (b) Rec-
tification applied after estimating the vanishing point of motion lines, (c) Image deblurred
using a camera with a fluttered shutter.

By opening the shutter several times, it is possible to capture cells in motion with good
resolution Fig. 4.6. Martel et al. (2020) built on this work to optimize the per-pixel shutter
function in an end-to-end deep learning framework, in what was referred to as neural
sensors. Coded exposure, however, has other applications. For example, using deep
learning, Okawara et al. (2020) jointly optimize the coded exposure and a classification
model in a convolutional neural network to classify human actions in a single coded image.

Usingmultiple coded apertures: Estimating theDepth fromDefocus is an ill-posed inverse
problem because for this approach to work, it is required to estimate the size of the defocus
blur from a single image. A typical strategy to convert an ill-posed problem to a well-posed
one requires the introduction of diversity in the measurements. The same applies to the case
of DFD. In literature, a common approach that is used entails using multiple measurements
with different defocus blurs. For example, this can arise from changing the focus setting
by axially translating the sensor. Another method to create diversity in measurements uses
different apertures, for instance, using two images, one with a large aperture introducing
greater amount of defocus and another one with smaller aperture producing an image with
large depth-of-field (when compared to the former setting). However, it should be noted
that in either case, the defocus is intimately linked with the aperture pattern that is typically
chosen to be a circular disk. To this end, the use of multiple coded apertures has been
proposed in the literature. For instance, Farid and Simoncelli Farid and Simoncelli (1998)
used two images that are obtained with two different aperture patterns, that is, the Gaussian
function and its derivative. Hiura and Matsuyama (1998) used a pair of pin-hole apertures
for depth measurement. When working with a pair of images, Zhou et al. (2010) proposed
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Figure 4.6: Fluorescence Imaging for the Nuclei of Leukemia Cells with Different Veloc-
ities. The motion blur of the cells, which is more pronounced with higher speeds, can be
reversed with the fluttered shutter approach. Reprinted from Gorthi et al. (2013).

a method for aperture pattern optimization for high-fidelity depth map recovery together
with sharp, conventional image. Other imaging methods making use of coded aperture can
be found in Gottesman and Fenimore (1989); Fenimore and Cannon (1978).

Next we will discuss various techniques to extend the depth of field of an image either
by capturing the full light field, or by integrating the optical setup and computation via
ray-space analysis. A simple method to extend the depth of field is to decrease the aperture
size. However, this leads to a significant amount of noise. An alternative uses the concept
of focal stack, which represents a series of images captured with the camera focused at
different depths. This technique then requires combining the focal stack images using
something similar to photomontage Curless et al. (2004). As shown in Fig. 4.7, this leads
to a much clearer image.

We call the point spread function (PSF) the image projected by a scene point on the sensor.
When the point is in focus, the PSF is defined by an infinitesimal size disc. When out of
focus, the disc increases in size with measurable diameter. Therefore, the depth is a function
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(a) (b)

Figure 4.7: Extending the Depth of Field. (a) Focal stack measured with different focus
points. (b) Extended depth of field by reducing aperture size. Reprinted from Ng et al.
(2005).

of the PSF size. It acts as a convolution filter on the data to produce the measurements:

m (x, y) = (PSF ∗ I) (x, y) ,

where I (x, y) represents the irradiance at location (x, y) and m (x, y) are the sensor mea-
surements at the same coordinates. It turns out that the PSF, which is disc-shaped in space,
acts as a low-pass filter in frequency. This leads to high frequencies being cancelled out,
and these cannot be recovered via deconvolution. Moreover, the PSF function is gener-
ally unknown as a function of distance. All of the reasons above make recovering I (x, y)
challenging in practice.

To recover the scene image I (x, y) while allowing efficient deblurring, there have been
attempts to “engineer” the optics of the camera to allow it to generate a distance-independent
PSF. One way is to use an amplitude mask on the aperture of the lens Levin et al. (2007);
Veeraraghavan et al. (2007), which essentially attenuates partially or fully the light rays
intersecting the lens. A different option is to translate the sensor relative to the lens, which
ensures that a large range of depths in the image are in focus Nagahara et al. (2008). Using
an image captured with such a modified PSF, one can then apply techniques based on
deconvolving to recover the image in the blurred regions. Essentially, this produces a final
image with an extended depth of field.
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Figure 4.8: Reduced Depth of Field via Blur Estimation. (left) The original image.
(middle) The estimated blur. (right) the image processed for depth reduction. Reprinted
from Bae and Durand (2007).

On the contrary, some applications require reducing the depth of field. In photography,
a reduced depth of field can be considered more pleasant, enhancing certain parts of the
image artistically. To this end, it is possible to use large lenses for their small depth of
field characteristics. However they tend to be bulky and difficult to move around. A more
convenient solution is using software to estimate and subsequently magnify the existing
blur in the image, as depicted in Fig. 4.8 Bae and Durand (2007). To alleviate the potential
incorrect estimates due to noise sensitivity, it is also possible to use several lenses with
different apertures to achieve the desired effect Hasinoff and Kutulakos (2007). This
principle is already applied in many consumer grade cameras and mobile phones.

As expected, it is more convenient to introduce the desired effects without updating the
hardware, which increases the product affordability. To address this, the concept of lens in
time translates the lens parallel to the sensor during the explosion time of a single capture,
which allows using cheap hardware to achieve the same desired effect with good accuracy
Mohan et al. (2009).

The glare is another important problemwith many cameras. The source of glare is typically
caused by light being reflected by the lens, or due to the lens diffraction effect. The reflection
reduces the light reaching the sensor, but also bounces back and causes unwanted flare
effects. One way to address this is by coating the lens with multiple layers to cancel out
reflections at multiple frequencies, as we saw in the Imaging Toolkit Chapter.

As mentioned briefly in the Imaging Toolkit Chapter, the image captured by a camera
can be separated into global (reflectance from objects in the scene) and direct components
(illumination by the source). Using a high frequency mask placed in variable locations,
it is possible to separate the two Talvala et al. (2007). Since glare is a global effect, it is
convenient to eliminate it this way. The setup proposed in Talvala et al. (2007) is depicted
in Fig. 4.9.
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Figure 4.9: Removing Glare from the Scene with a High Frequency Mask outside the
Camera.

Figure 4.10: Glare Reduction using a High Frequency Mask Near the Sensor. The glare
effect can be enhanced (left) or eliminated (right) by separating the light into global and
direct components in the original image (center).

However, this technique requires a long capturing process that can take up to an hour.
Furthermore, the technique onlyworkswhen themask is in focus, thus limiting the technique
to indoor conditions.

Another interpretation of glare is by looking at the frequency domain representation of the
light field. It turns out that it is mostly situated at high frequencies, therefore formulating
the glare reduction operation as a filtering method Raskar et al. (2008). This time, the setup
involves a mask placed inside the camera, on the sensor. For a Lambertian surface in the
scene, characterised by diffusing light evenly in all directions, the angular component in the
Fourier domain contains no information. The glare component, however, is only present in
certain angular directions, therefore appearing as an outlier in the Fourier domain, which
means it can be eliminated via relatively simple algorithms Raskar et al. (2008). This
requires measuring the light field, which is known to be demanding. However, using the
fact that the glare is only present in the angular domain, the light field camera in this case is
significantly simpler than a traditional one. A “dappled photography” Veeraraghavan et al.
(2007) based lightfield camera is depicted in Fig. 4.11.
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Figure 4.11: Prototype of a Light Field Camera for Glare Reduction.

The light field information is extracted using a mask placed right in front of the sensor.
The prototype is capable of separating glare into multiple categories, without the need to
capture several photographs. If the glare wavelength is known, then it can be filtered out
using an appropriate mask. This has the advantage that it does not dim the light from nearby
objects of different colors Mohan et al. (2008).

4.2 Coding the Sensor

An imaging sensor’s capability can be enhanced by using the idea of sensor coding. That
is, the concept of coded aperture imaging that was applied at the level of optics can also
be brought to the imaging sensor. These ideas are being used in innovations even today.
Sun et al. (2020) develop a probabilistic strategy to determine the optimal sensor sampling
distribution for the optimal sensor design. Chakrabarti (2016) uses a deep learning approach
to backpropogate through the network parameters as well as the sensor parameters. These
works were built on the principles discussed below.

4.2.1 Coded Sensors for Color Imaging
One of the earliest examples of coded sensor imaging led to the advent of colored digital
imaging. Electronic imaging sensors cannot record the color of incident light as they only
record the varying attenuation of light intensity levelsmaking themmonochromatic sensors.
To this end, Bryce Bayer working at Eastman Kodak used the idea of sensor coding (circa
1975) where the was made light sensitive by using what is known as the Color Filter Array
(CFA).
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Figure 4.12: Three Sensor Architectures for Color Imaging.

As can be seen from Fig. 4.12, it takes four monochromic pixels to produce one colored
pixel. One may wonder why four pixels are needed instead of using three, each attributed
to red (R), green (G) and blue (B) colors. The choice of using twice as many green pixels
is based on the physiological aspects of human visual apparatus. The human retina by its
design has higher sensitivity to the green light during the day time. This is intricately tied to
the cone cells in the retina which lead to a weighted sensitivity of luminance perception. So
far, we have described the idea of sensor coding via CFAs. What about decoding? Clearly,
in achieving a colored image from a monochromatic sensor, the essential resolution is
downsized by a factor of 4. Further to this, we still need to convert individual RGB
pixels into colored pixels. Hence, decoding in the case of CFA entails recovering a full
resolution, colored image from the sensor coded image. This is known demosaicing. As
the name implies, when using the demosaicing approach, one demosaics the RGB tiles and
combines them to produce a full resolution colored image. One of the simplest methods
for demosaicing uses interpolation of color values of the pixels of the same color in their
neighbourhood. For any interpolation approach to work, a smoothness prior has to be
assumed on the values to be interpolated. This is akin to the Shannon-Nyquist principle.
Hence, demosaicing by interpolation is well suited for images with constant color regions
and smooth gradients. Any abrupt jump in color or brightness levels would result in
artifacts. This is typically the case with edges and a well understood solution to this
problem requires interpolation along the edge instead of interpolation across the edge.

Demosaicing represents only one of the steps in a processing pipeline that transforms the
raw sensor image into the final product, such as a JPEG image. The pipeline generally
introduces cumulative errors, but the work in Heide et al. (2014b) overcame this problem by
proposing a flexible image signal processor (ISP) called FlexISP, which optimizes the final
image based on assumptions on the final result, called image priors. For video capturing,
three chip cameras are a popular device, consisting of a prism, splitting the light into
the RGB wavelengths, and each wavelength is measured by a different sensor. The RGB
video is subsequently synthesized by combining the three components. This mechanism is
subsequently generalised to single-axis multi-parameter (SAMP) cameras, which use beam
splitters to send the light rays to multiple cameras, each with different sensor parameters
Mcguire et al. (2007). This allows great flexibility. For example, by adding color filters to
different cameras, the setup is equivalent to the three chip camera. The possibilities are a
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Light

(a) (b)
Figure 4.13: A Single-Axis Multi-Parameter (SAMP) Camera. (a) The diagram depicts
the incoming light beam split sequentially into 8 beams each captured by different cameras
with different settings. (b) The picture of the SAMP camera setup. Reprinted fromMcguire
et al. (2007).

lot more diverse. For example, each picture can be captured with a different exposure time,
and the resulting images can be processed into an HDR image. The diagram and picture of
this setup is depicted in Fig. 4.13.

The SAMP camera is a self-explanatory setup, and therefore simple to implement on a
theoretical level. However the large amount of hardware required comes with greater cost
and a bulkier size.

4.2.2 Coded Sensors for High Dynamic Range Imaging
Natural scenes are often composed of significant intensity ranges that may be far beyond
what can be captured using a digital imaging sensor. As an example, consider the case of
portrait photography against the Sun. When such a situation arises, that is, the amplitude
or intensity to be captured is larger than the maximum recordable threshold of the digital
sensor, the measurements are clipped. This results in a permanent loss of information and is
known as the sensor saturation problem. With the human perception, this is not a problem
as the human eyes are sensitive to subtle variations in contrast and can handle scenes with
large range of intensities or dynamic range Blackwell (1946). On the other hand, a digital
image capture device such as a digital camera or a video camera can only handle a finite
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Figure 4.14: Three Sensor Architectures for High Dynamic Range Imaging.

dynamic range that is set by its bit-budget. For instance, an 8-bit digital system can handle
256 levels of illumination or brightness. The dynamic range of a system can be enhanced
by simultaneously sampling across the spatial dimension and the exposure. This requires
obtaining multiple exposures with varying intensities. The resultant set of images is then
fused together algorithmically producing a single high dynamic range image. This method
is known as high dynamic range or HDR imaging Debevec and Malik (1997). While this
is a fantastic workaround as this requires no modification to the imaging setup, in several
cases, obtaining multiple exposures may not be feasible, specifically in the case of scenes
with fast motion between the exposures.

In order to circumvent the problem of using multiple exposures, in Nayar and Mitsunaga
(2000), they proposed a coded sensor strategy. What was done with the colored filter array
(CFA) in the previous case was extended to the idea of brightness. In their approach,
the authors created a macro-pixel from four pixels (as before), each pixel attenuating the
incoming light with different but pre-designed factors.

In Fig. 4.14, the brightness level linked with each pixel marked with a certain gray level
represents its sensitivity. Consequently, light shaded pixels will saturate faster for a given
irradiance of light while their dark shaded counterparts will record an attenuated expo-
sure. As a result, even if one of the pixels is saturated, the illumination information can
be recorded in one of the neighboring pixels provided that none of the four pixels satu-
rate simultaneously. In this way, coded sensor imaging allows for simultaneous sampling
of information along both the spatial and the exposure dimensions of the natural scene.
Previously, in the case of Bayer’s CFA, simultaneous sampling of information was per-
formed along the spatial and the color dimensions of the scene. For the decoding step,
two different approaches may be used for HDR image recovery. The first method is known
as Image Reconstruction by Aggregation. The idea here is to average the macro-pixel
consisting of 2 × 2 blocks. This averaging can be performed using a two-dimensional box
filter. The second method is similar to the case of colored imaging and involves Image
Reconstruction by Interpolation. In this case, the inter-pixel values are interpolated using
cubic interpolation. This approach works well in practice because sensor coding results in
over-sampled measurements. Hence, saturated and noisy pixels from each macro pixel can
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be discarded and the unknown values can be interpolated. That said, careful normalization
must be performed to achieve realistic estimates of the brightness levels.

4.2.3 Modulo Sensors for HDR Imaging
In the context of computational sensing and imaging, a general purpose strategy for HDR
capture and recovery has been introduced recently. Conventional digital systems acquire
pointwise measurements that may potentially saturate, thus resulting in permanent loss
of information. In contrast, in the Unlimited Sensing framework Bhandari et al. (2017,
2020), one obtains folded measurements by injecting modulo non-linearities in the sensing
pipeline. This leads to different kind of information loss where the signal is folded into
the dynamic range of the sensor. To see this in action, let us define the centered modulo
operation using the mapping

MVmax : f �→ 2Vmax

( [[
f

2Vmax
+

1
2

]]
− 1

2

)
, [[ f ]] def

= f − � f � (4.1)

where [[ f ]] and � f � define the fractional part and floor function, respectively. Clearly, the
modulo measurements defined by,

y [k] =MVmax (g (kT))

are always smaller than the sensing threshold Vmax > 0. For a one-dimensional signal, the
effect of modulo non-linearity is shown in Fig. 4.15 (a). The recorded measurements are
orders of magnitude smaller than the original, HDR signal. Modulo samples for an image
are shown in Fig. 4.15 (b). Conceptually, analog-to-digital converters and imaging systems
that implement signal folding have been presented in circuit design literature Rhee and Joo
(2003) and have also been implemented in the recent years Sasagawa et al. (2016); Zhao et al.
(2010). Inversion of the modulo operator is a difficult problem in general Bhandari (2018);
Bhandari et al. (2020). Akin to the Nyquist-Shannon recovery criterion (cf. Theorem 3.2),
the Unlimited Sampling Theorem shows that a constant-factor oversampling suffices to
recover any bandlimited signal from its low dynamic range, modulo samples.

Images are non-bandlimited objects and this is mainly due to the fact that image features
such as corners and edges contain high frequency information. Mathematical guarantees for
image recovery from modulo measurements has been presented in Bhandari and Krahmer
(2020) where images are modelled in terms of shifts of spline functions Unser (1999). Let
x ∈ Rd be the spatial coordinates of a d-dimensional image g (x). For multi-dimensional
functions such as images, the following shift-invariant model

VN
h =

{
g (x) =

∑

m∈Zd
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(
H−1x − m

)
: c ∈ �2

(
Zd

)}
(4.2)

is a flexible choice. In the above,
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Figure 4.15: HDR Imaging from Modulo Samples. In the figure λ = Vmax.

• H is a d × d diagonal matrix, with dilations h1, h2, . . . , hd on the diagonal.

• c ∈ �2
(
Zd

)
are the coefficients. The expansion coefficients c[k]’s , can be evaluated

using different strategies Blu and Unser (1999) namely, interpolation, orthogonal pro-
jection and quasi-interpolation

• BN is a B-spline of order N and since the tensor product representation holds, one has
that BN (x) =∏d

m=1 BN (xm).

When modulo measurements of an image g (x) ∈ R are given in the form,

y [k] =MVmax (g(kT)), T > 0

the sampling interval (cf. Bhandari and Krahmer (2020)),

T <
h
πe

(
Vmax

max |g (x) |C̃n,N

)1/n

, n � N, C̃n,N =

(KN−n
KN

)
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Figure 4.16: HDR Tomography Using Modulo Radon Transform.

guarantees recovery of the HDR image. In the aboveKN is the Bohr–Favard constant and e
is the Euler number. Using the measurements in Fig. 4.15 (b), an exemplary reconstruction
is shown in Fig. 4.15 (c).

Dynamic range constraint is a natural barrier in imaging systems that go beyond consumer
photography. For instance, To overcome the dynamic range limitation of detectors used in
Computed Tomography (CT), the authors in Chen et al. (2015) extended the applicability
of multi-exposure fusion in consumer photography. In particular, they showed that high-
dynamic-rangeCT reconstruction is possible by recordingmultiple exposures by varying the
tube-voltage. The principle of dynamic range compression usingmodulo non-linearities can
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be applied to a wider class of computational imaging problems. For instance, the Modulo
Radon Transform (MRT) Bhandari et al. (2020a) allows for HDR reconstruction of Radon
Transform projections. Fig. 4.16 shows conventional Radon Transform projections together
with the low dynamic range Modulo Radon Transform. The reconstruction algorithm
Beckmann et al. (2020) allows for recovery of the input image. The MRT has the advantage
that it is a single-shot approach (avoids the drawbacks of the multi-exposure fusion method)
and is backed by mathematical guarantees.

4.2.4 Tone Mapping
The applications of tone mapping, which is a technique to create a mapping between two
sets of colors, range from producing aesthetically pleasing images, to enhancing details,
leading to a higher contrast photograph. Many of today’s displays are not supporting
HDR content, so without tone mapping, the details in the image would be greatly reduced.
Therefore, in order to enhance the applicability of HDR imagery, we need to deal with two
problems:

1. Displaying HDR content on low dynamic range (LDR) displays, such as computer
monitors.

2. Displaying LDR content on HDR displays.

Those two problems can be addressed via tone mapping, by converting the content from
one format to the other, while taking the human perception into account as a key factor.
One way is to compress the extended dynamic range of the available footage into a range
that can be displayed on a LDR device. There are two ways to compress the footage

1. Global compression is acting on all pixels at once,

2. Local compression is converting selectively a region in the image.

Global compression is done by evaluating the luminance and other global variables, to
compute the optimal transformation of each pixel independently from the values of the
neighboring pixels. This can be done, for example by reducing the image contrast, adjusting
the brightness or via gamma correction. However, it is expected that an image could have
certain regions with a different dynamic range from others, which would lead to decreased
contrast in the resulting processed image.

Local compression extracts features in various image regions, and computes a region
specific transformation. This is why this process is heavier computationally, and sometimes
leads to small artefacts. However the local compression leads to much better results, given
that the mammalian visual system perceives the contrast mostly locally. Examples are
using bilateral filtering, gradient domain computation or constraint propagation. We will
go successively through each of those as follows.
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Base Detail Color
Figure 4.17: Dynamic Range Compression with the Bilateral Filter Method. The Base and
Detail layers are computed on grayscale images. Color is treated separately, by reducing
the contrast on each of its components, and then recomposing into the new color.

Figure 4.18: Gradient Based Local Compression. Starting with five images taken with
different exposure values (up), a radiance map is then computed with pixel gradient calcu-
lations. The gradient attenuations (left) indicate the attenuation at that pixel corresponding
to the gradient value. The final result contains enough detail in both the dark and bright
parts of the scene (right). Reprinted from Fattal et al. (2002).

Bilateral filtering methods split the image to be processed in two layers: the detail layer,
with a filter preserving the edges, and base layer Durand and Dorsey (2002). The main
idea is that, during dynamic range compression, the detail layer contains the information
we want to keep unaltered, while the base layer information can be reduced. An example
of an image processed with this method is depicted in Fig. 4.17. This methodology was
shown to work well in real-time Chen et al. (2007), and also was used to generate creative
and novel photograph processing.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

4.2 Coding the Sensor 141

10  

Moonlight Starlight Daylight Flashbulb 

Intensity Range for Human Vision 

Indoors light 

0 255 

0 255 

Pixel Range 

High resolution, low range High resolution, low range 

Low resolution, extended range 

0 255 

10 2 10 102 104 108 

Figure 4.19: Mapping the High Dynamic Range Intensities onto Pixel Values.

Gradient based methods calculate a gradient field of the original image and reduce the
values of the large gradients, while simultaneously ensuring that the local contrast is not
significantly modified Fattal et al. (2002). Therefore, this method reduces the contrast in
regions with no detail, and enhances contrast in dark regions. An example where this
method is applied is depicted in Fig. 4.18.

Alternatively, rather than using gradients, it is possible to propagate pre defined constraints
in an image. For example, the edges in the original image can remain unaltered while the
dynamic range can be compressed in local regions located between the edges Lischinski
et al. (2006).

After summarising some of the methods used for compressing the dynamic range, we can
now look at displaying LDR content on the ever increasing range of commercially available
HDR displays. This method is known as reverse tone-mapping. The problem in this case is
unfortunately under-determined, meaning that the resulting processed image contains more
information than the original image.

In order to store accurately images of real scenes, we need to map the high dynamic range of
intensities in the outside world on a value that will be assigned to the pixel. As depicted in
Fig. 4.19, one can notice that to cover the extended range of intensities with a fixed number
of bits per pixel, one needs a trade-off between the range covered and the resolution.
Initially, the number of bits per pixel were very large. The currently widely accepted format
was devised in 2003 by Industrial Light and Magic in collaboration with independent
partners, which included flexible bit depth, backwards compatibility, computing platform
independence and open-source licensing (www.openexr.com). The EXR format is widely

www.openexr.com
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used in cases where the accuracy has a high priority, e.g., photorealistic rendering, texturing
etc.

The display of HDR content was addressed by placing two screens parallel to each other:
a low-resolution display behind an LCD screen Seetzen et al. (2004). The image viewed
on the opposite side of the LCD screen has a high contrast, which is equal to the product
of the contrasts of each individual screen. The contrast of a display is evaluated using the
contrast ratio (CR) measure, which is the ratio between the luminance of the brightest color
to that of the darkest color that the display can achieve. A consumer grade display may
have a CR in the order of thousands to 1. The two display setting in Seetzen et al. (2004)
allowed visualising HDR content achieving CRs as high as 50,000 : 1.

The classical representation of color is based on three primaries: red, green and blue
(RGB). However, this simplified representation does not always encode the color faithfully.
For instance, metamerism is the phenomenon where objects for which the spectra of their
reflected light are significantly different, but the tricolor representation makes them look
very similar. Interestingly, each set of RGB primaries, or mapping between colors and
wavelengths defines a continuous set of human perceived colors, shaped as a convex hull.
Therefore a device can only reproduce a subset of the human perceived colors. Typically
this subset is defined by the RGBfilters in the Bayer pattern. The use of color filters precedes
the advent of color photography. Even during the times of black-and-white photography,
color filters were used in order to enhance the contrast in an image. For instance, without
the filters the sensor would hardly distinguish between clouds and the sky, which is an
example of imaging metamers in a scene. Some modern cameras allow filtering the image
in real-time at desired frequencies, which allows distinguishing between metamers in the
scene.

4.2.5 Exposure Metering
In photography, there are rules of thumb on how to set the camera parameters for a good
image exposure, for example the aperture setting to f/16 and shutter speed to 1/ISO when
there is a lot of ambient light, also known as the “sunny-16 rule.” We would prefer that the
intensity of the ambient light is measured automatically, which is done with an in-camera
light meter. The light meters can be grouped in two categories:

• reflected-light meters,

• incident-light meters.

The reflected-light meters evaluate the light reflected by the scene, and include all in-camera
light meters. Examples are spot meters, which measure the light reflected by a small view
angle (1 degree or less), and center-weighted meters, which average out the light from a
larger portion of the scene.
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The reflected-light meters are not effective in the case of highly reflective scenes such as
large areas covered in snow. To achieve good results in this case, incident-light meters are
placed at the scene to measure the arriving light, which avoids the reflective properties of
the scene.

Placing meters on the scene is difficult and often impossible. A popular system designed to
produce accurate exposure values for a scene is called the Zone System. This system allows
human perception to be included in the choice of exposure value Adams (1980). It relies
on the fact that the photographer can recognise which objects are more reflective and which
not, therefore making the appropriate choice in each case. It consists of 10 zones, each one
representing an increase in expose value by a factor of 2 compared to the preceding one.

This concept was later implemented commercially by Nikon, who included multi zone
metering in their Nikon FA camera. The concept is extended in the sense that the sensors
are organized in a matrix and measure the brightness in several locations in the scene,
ranging from 5 to several thousand. The camera then automatically computes the optimal
settings for that capture.

4.2.6 Improving the Resolution
The resolution of an image is in direct connection with the ISO parameter measuring
the light sensitivity. Dating back to the film-based analog cameras, decreasing the ISO
would lead to a finer film granularity, and thus higher resolution, and large ISO values
lead to a higher granularity and thus lower resolution. In digital cameras, the equivalent of
granularity is the number/size of the discrete light-sensitive sensors called pixels. The ISO
sensitivity in this case adjusts the gain of the analog-to-digital (A/D) converter, leading to
brighter images.

Unfortunately, the higher gain also amplifies the noise. One may say that this does not
change the resolution of the sensor, which is fixed. However, the usable resolution drops
in this case: fewer distinct pixels capture useful details from the scene. This problem as
well as other causes of decreased resolution can be alleviated with the methodology known
as “superresolution.” In the case of noise images, several exposures with low effective
resolution can be used to compute a high resolution image, by fusing the information from
all the image captures. Specifically, the superresolution algorithms first estimate the relative
movement between the camera and the scene, and then find a common coordinate system.
This is then used to filter each individual image and fuse them together. Examples include
the works of Tsai and Huang (1984); Kim et al. (1990); Irani and Peleg (1990, 1991); Kim
and Su (1993); Elad and Feuer (1997).

Just as in the case of the noisy image, the superresolution can be implemented by fusing
images captured with low resolution images and varying camera parameters. For example
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(a) (b)

(c) (d)

(e)

Figure 4.20: The Space-Time Superresolution Technique. Using four video recordings at
low frame rate and low resolution, a new higher resolution video is generated with frames
at times where there is no physical measurement. Reprinted from Shechtman et al. (2005).

the sensor position can be changed in a noisy way to introduce a variation between images
Keren et al. (1988); Vandewalle et al. (2006). Alternatively, the aperture of each image
capture can be altered Komatsu et al. (1993), the zoom level Joshi et al. (2004), or the level
of blur, shading and defocus characteristics Rajan et al. (2003).

Interestingly, the resolution can also be increased by using a single photograph. By inducing
motion blur through long exposure when capturing a moving object, the resulting image
consists of an elongated capture of that object, therefore allowing more pixels to encode its
details. The result is a high resolution image of the object in question Agrawal and Raskar
(2007).

4.2.7 Capturing Fast Phenomena
Imaging fast motions dates back to the 1870s, when the English photographer Eadweard
Muybridge designed a multi camera setup allowing to photograph a horse galloping. It
consisted of a system synchronising the shutters of several cameras using electromagnets.
This allowed one of the first glimpses of the details in the movement of humans or animals.

Nowadays modern cameras can reach frame rates as high as 1000 frames per second,
revealing details of the scene that would be unable to notice with the human eye. However
certain high speed phenomena still could not be captured in this way. The concept of
superresolution, presented in the previous subsection, can be used here too in order to
further enhance the frame rate. Just as it was used to recover the values of the light
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intensities in between the measured pixels, here superresolution is used to recover frames
located between the captured frames. In Shechtman et al. (2005), the authors captured a
scene with multiple cameras of relatively small resolution and frame rate. As the pixels in
the cameras are not perfectly aligned, and the frames are not perfectly synchronised in time,
the authors exploit this to infer additional information about the scene. The application of
this methodology is depicted in Fig. 4.20.

However, the superresolution cannot increase the performance arbitrarily high due to the
reconstruction error. High speed video was also achieved by using a set of 128 digital video
cameras packed together, so that they all have the same field of view. The cameras all had a
frame rate of 30 fps, but they were synchronised such that in each 1/30 second interval all
cameras were capturing a frame at equidistant times. This allowed their setup to produce
frame rates as high as 3,000 fps.

4.2.8 Using Coded Sensors for Light Field Capture
Another interesting application of coded sensor imaging is linked with recovery of four-
dimensional light fields from two-dimensional images. Conventional methods for capturing
a light field rely on trading-off spatial resolution for angular differences. For example,
using an array of lenses or using a large lens covering a micro-lens array. However, as
demonstrated by Veeraraghavan et al. (2007), a coded sensor approach allows for a solution
that does not require any use of refractive optics. In this approach, coined as Dappled
Photography, the key idea is to place a mask on the sensor. By placing a high frequency
sinusoidal mask between the sensor and the optical elements of a camera, spectral tiles of
the light field in four-dimensional Fourier domain can be created. Hence, the encoding
measurements multiplex a four-dimensional light field on a two-dimensional image. The
light field is then decoded from the measurements in two steps. First, the Fourier transform
of the two-dimensional image is computed and then reassembled in a way such that the
two-dimensional tiles can be stacked into the four-dimensional plane. There on, a four-
dimensional inverse Fourier transform then results in the desired light field. A method for
high resolution imaging was presented in Cossairt et al. (2011). Masks have also been used
in order to reduce the blur in the out of focus regions of the image, in a process called
defocus deblurring, which consists of finding good coded apertures that allows recovering
a sharp image from its blurred original version Masia et al. (2012). The authors showed
that the results are significantly improved when considering the human visual perception
factor for designing the masks.

4.3 Coding the Illumination

In the preceding examples, we have seen how coded aperture and coded sensor imaging can
enhance the capability of an imaging system. In doing so, it was assumed that the ambient
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illumination is fixed by design. However, if illumination is used as a degree-of-freedom
in designing an imaging system, the idea of coding illumination can lead to substantial
advantages. Coded illumination strategy can be based on something as simple as a light
flash used in consumer photography or may employ more sophisticated setups such as a
projector or a laser. Next we present a few examples.

4.3.1 Coded Illumination Imaging with Flash
The scene lighting has a big impact on the end result of the imaging process. If a scene is
poorly lit, some of the options available preserving the ambient light include increasing the
exposure, using a larger aperture or increasing the sensor ISO. However, each comes with
its own drawback. Longer exposure times create motion blur, either due to moving objects
or moving camera position, larger apertures lead to smaller depths of view and larger ISO
values decrease the signal-to-noise ratio.

Flash photography addresses all the problems above, at the expense of images that don’t
reproduce the true ambient illumination. In addition, flash images lead to brighter closer
objects and cause the red eye effect and harsh shadows.

However, the flash and ambient images can be combined in order to use the benefits of
both modalities. In Petschnigg et al. (2004), the authors propose a method of generating
flash/ambient image pairs and combining them with algorithms that perform denoising of
the ambient image, transfer detail from the flash image to the ambient image, perform white
balancing on the ambient image and allow a continuous adjustment between the information
given by the two images.

In order to achieve this, the two images are captured with the same aperture and focal
length. The quality of the ambient image is optimised by tuning the exposure time and ISO
values. The flash image is captured with low ISO and exposure time, in order to minimise
the noise and provide more high-frequency details.

The denoising algorithm is based on an existing technique that processes the image with
an edge-preserving bilateral filter. However, the flash image contains more detail on the
edges, which is used to design a joint bilateral filter that leads to more natural results with
less noise.

The next step is transferring high frequency detail from the flash image to the ambient
image. To this end, the detail from the flash image is computed as the variation around the
denoised image. However, the computed detail is not accurate in the shadow or specular
regions, and a mask is used to avoid transferring any detail from the respective image areas
Petschnigg et al. (2004). An example of image denoising and detail transfer is depicted in
Fig. 4.21.
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Figure 4.21: The Procedure of Transferring Details from the Flash Image to the Ambient
Image. (a) Flash image. (b) Ambient image. (c) Ambient image processed with denoising
and detail transfer. Reprinted from Petschnigg et al. (2004).

Using two images also improves white balancing, where the known colour of the flash light
provides useful information for the image colouring. The authors additionally introduce
a method to allow a user to generate an intermediate image in between the flash and
ambient images in real time, therefore essentially adjusting the flash intensity post capture.
Inspecting the differences in between the two images allows correcting for undesirable
artifacts such as the red eye.

4.3.2 Coded Illumination Imaging with Lasers
When the scene is illuminated for image capturing, the illumination has two sources:
the direct illumination by the source and the global illumination from other points in the
scene Nayar et al. (2006). The separation of these two sources is desirable because each one
reveals different information about the scene. The direct component enhances the material
properties of a given point, and the global component reveals the optical properties of the
scene, indicating how a certain point is illuminated by other points in the scene.

The scene was divided in a number of patches, such that each visible patch corresponds
to a pixel of the light source. The main observation that makes the separation of the two
components possible is that using high frequency illumination lights up patches in the scene
that have both global and direct components, and leaving unlit patches with only global
components. For an uniform coverage of the scene, the illumination was performed using
checkerboard patterns. However, an off-the-shelf projector suffers from imperfections such
as light leakages in its optics, which causes some unwanted brightness variation between
the checkers. To compensate for this, the authors capture 5 times more images, shifting the
checkers pattern slightly each time.
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All experiments above include artificial illumination, indicating that they can only be
performed indoors. However, it is possible to separate the global and direct illumination
components outdoors too, using occluders, which have the opposite effect of a light
projector, casting shadow on various portions of the scene. Examples include the line
occluder (a stick) and the mesh occluder.

The future of this line of research could see camera flasheswith high frequency components,
tailored to allow an in-camera separation of the two components. This would allow the
users to create novel images, where the appearance of objects can be edited using their
global and direct components Nayar et al. (2006). The depth of a scene can be inferred
accurately in the presence of global illumination Gupta et al. (2009). A theoretical lower
bound was derived on the number of images required to separate the global and direct
illumination components Gu et al. (2011).

4.3.3 Coded Illumination Imaging with LEDs
Let us consider the context of microscopy. Changing the viewing angle, or moving the
specimen in order to acquire an image from a different perspective can be problematic.
Using illumination can help solve this problem more easily. In microscopy there is a
common tradeoff between the resolution and the field of view, meaning that a specimen can
only be captured in high detail in a relatively narrow region. In order to increase the field
of view without affecting the accuracy, a well known computational imaging technique
is called Fourier ptychography. This technique increases the numerical aperture of the
microscope, which is essentially the range of angles it can capture, by recording images
illuminated from a range of different angles. This results in increased resolution compared
to a conventional microscope. The illumination is done with an array of LEDs. In the
Fourier domain, changing the illumination angle corresponds to Fourier values computed
in a shifted domain. The large numerical aperture image is then computed by stitching the
Fourier slices. This requires a large overlap between the domains of each slice of around
60%.

The traditional methods capture one illumination angle at a time, by turning the LEDs
on in a sequential manner. The work in Tian et al. (2014) improves on the traditional
methods by turning a larger number of LEDs on, therefore saving a lot of acquisition
time. Specifically, when K LEDs are turned on at the same time, the exposure time can be
decreased K times, since there will be K times more light rays illuminating the specimen.
The number of images can also be decreased by K , leading to a total reduction by a factor
of K2 in acquisition time. The K LEDs are selected randomly, but ensuring that different
images do not use the same LEDs. An example for K = 4 is given in Fig. 4.22, for four
randomly generated patterns of LEDs. The lateral resolution can be doubled by using a pair
of images with asymmetric illumination patterns Tian and Waller (2015). Kellman et al.
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Figure 4.22: A Fourier Ptychography Technique with Multiplexed Illumination. The LED
pattern (top) illuminates the target object, leading to a different image (middle). For each
illumination, the resulting image has a spectrum computed in four subsets of the two-
dimensional frequency domain, corresponding to the four LEDs (bottom). Reprinted from
Tian et al. (2014).

(2019) present a method of optimizing the LED illumination pattern for phase retrieval in
microscopy by combining the physics of the measurement scheme with the non-linearity
of deep learning.

Decreasing the exposure time allows capturing videos of samples to record dynamical
phenomena among populations of cells such as division and migration Tian et al. (2015).

Other works optimise illumination to increase the performance in depth estimation Nayar
et al. (1996), or for differential phase imaging, which recovers the optical path length of the
sample Tian et al. (2015). In conditions of poor visibility, controlling the light transport,
such as using polarized light, leads to images of superior quality than using the existing
illumination Gupta et al. (2008). A method generating wide field-of-view images using
reflective surfaces was presented in Hicks and Bajcsy (2001).
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4.4 Further Research

In this section we discuss three interesting applications of spatially coded imaging: com-
pressive imaging, ghost imaging and spectrometry. With the ever increasing resolution of
2D cameras andwith the advent of plenoptic cameras for capturing light fields, the constraint
on the bandwidth of the data transmission infrastructure becomes evident. Compressive
imaging offers a solution to this problem by minimising the measurements transmitted. It
is possible to capture images of objects that are not in the line of sight of the camera, using
a setup known as ghost imaging. Moreover, it is also possible to use it in conjunction with
compressive sensing for increased efficiency. Lastly, most photographs taken capture the
light intensity distributed in space. Analysing the light in the frequency domain can say a
lot about the material properties, in a process called spectrometry.

4.4.1 Compressive Imaging
Compressive imaging is an image processing technique to capture efficiently an image
with reduced number of samples, which allows recovering a higher resolution image of the
scene, by finding solutions to underdetermined linear systems.

So far, we have seen how varying parameters of the imaging system helps achieve improved
results. Here, we will discuss sampling methods, and ways to minimise the number
of samples that lead to a good representation of the original data. Shannon’s sampling
theorem proves that a signal can be perfectly recovered if sampled at a rate twice the
maximum frequency in its spectrum, also known as the Nyquist rate. What happens if we
take fewer samples? In the general case, this would lead to aliasing, meaning that the high
frequencies in the signal no longer can be recovered from the generated samples. However,
in many practical applications, signals can be represented by samples taken at sub-Nyquist
rates due to a property called K-sparsity, which we will define as follows.

We will discuss the one variable scenario, but this analysis can be easily generalised to
two variables. Let f = [ f1, · · · , fN ] be a vector of N samples, which can be represented
in an orthonormal basis {gp}p=1, · · · ,N as f =

∑N
p=1 cpgp . In matrix form, this amounts to

f = Gc, where the lines of G are given by vectors {gp}p=1, · · · ,N . We say that f is K-sparse
in this basis, if K < N and f =

∑K
i=1 cpi gpi , meaning that only K elements from the set

{c1, . . . , cN } are different from 0.

One way to encode such a signal is given by transform coding. This involves generating
the full set f of N samples, then estimating the coefficients cp as cp = 〈f, gp〉, p = 1, . . . ,N ,
and finally computing the largest K coefficients. This process is unnecessarily complex,
especially if K � N .
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The compressive sensing problem aims to decrease the number of generated samples to
M � N from the start, and then introduce methods to recover the signal from the samples.
The new M samples, denoted {yp}p=1, · · · ,M are generated by projecting signal f onto a new
set of sampling kernels {dp}p=1, · · · ,M , such that yp = 〈f, dp〉, p = 1, · · · ,M . Inmatrix form,
we can define themeasurement matrix D composed of M vectors d�

p , each with dimensions
1 × N , resulting in a final matrix dimension M × N . The resulting measurements are given
by y = Df, where y is a M × 1 vector.

There are ways to generate sampling kernels to guarantee perfect recovery. However, in a
practical setting, it is very convenient to generate matrixD randomly, which is demonstrated
to allow perfect recovery with a very high probability. Specifically, the elements in D are
taken from the Gaussian distribution with zero mean and variance 1/N .

Clearly, for M � N the problemof recovering f from y is ill-conditioned, because the system
y = Df is underdetermined, i.e., there are fewer equations than unknowns. However, this
problem can be approached assuming f is K-sparse in basis {gp}p=1, · · · ,N and M � K ,
which means that its vector of coefficients c in this basis has only K non-zero entries. In
practice, K-sparsity is not always precise and the measurements are noisy, therefore a more
reasonable assumption is that c has only K “large” elements. This is can be quantified using
vector norms, which leads to the following recovery formulations:

ĉ = arg min
c

‖ c ‖2
2 subject to y = DGc, (4.3)

ĉ = arg min
c

‖ c ‖0 subject to y = DGc, (4.4)

ĉ = arg min
c

‖ c ‖1 subject to y = DGc. (4.5)

The �2 norm from (4.3) is not very good at selecting the large coefficients. The number of
nonzero entries, given by �0 norm, seems like the ideal choice (4.4). However, the routines
implementing it are numerically unstable and complex. Moreover, they assume precise
K-sparsity. The most widely used reconstruction is based on �1 norm, which recovers
well signals that are precisely K-sparse, is less complex numerically, and leads to good
approximations in the case of noisy measurements.

One may wonder how to generate compressive samples y without generating the N uncom-
pressed samples f. A method proposed inWakin et al. (2006b,a) uses a Digital Micromirror
Device (DMD), which is essentially an array of small mirrors, each representing a pixel
that can switch between two angles. An image is projected onto this device, and each pixel
in the DMD can reflect the corresponding rays from the image either towards a photodiode
sensor, or away from it. The light reflected towards the sensor is integrated into a one di-
mensional data stream. This device, depicted in Fig. 4.23, is effectively generating samples
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[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why �2

reconstruction fails to find the sparse
solution that can be identified by �1

reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (�) + s
is oriented at a random angle due to the
randomness in the matrix � as shown in
Figure 2(b). (In practice N, M, K � 3, so
any intuition based on three dimensions
may be misleading.) The �2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the �2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the �1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the �1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j

and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the �2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the �2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the �1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the �1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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Figure 4.23: A Single Pixel Camera Performing Compressive Sensing. Reprinted from
Baraniuk (2007).

yp = 〈f,dp〉, where dp is a vectorized version of binary matrix defined by the orientations
of each DMD pixel, and f is a vectorized version of the two dimensional image.

This design enables choosing the kernels dp and the number of samples M in a flexible
and easy way. Increasing the number of samples leads to more precise reconstructions, and
decreasing it boosts the compression and decreases the acquisition time. Another advantage
of this device is that it avoids the use of a shutter. This is particularly significant for video
encoding, where a shutter typically opens and closes for every single frame, whereas in this
case samples can be captured in a continuous way Duarte et al. (2008).

The method described above is also known as single-pixel imaging, as every measurement
is acquired by mapping an image onto a single pixel sensor represented by the photodiode.
However, this involves a special setup with a DMD which takes up space and leads to
increased power consumption. Additionally, since it acquires one pixel at a time, it needs
many measurements for one image. A video captured with this setup would have a very
poor temporal resolution.

An intermediate step between capturing high resolution and single pixel measurements was
proposed inMarcia et al. (2009), where the assumption is that the camera has a small sensor
array. The authors introduce a method called compressive coded aperture imaging, which
recovers the high resolution data that is sparse in some basis from low resolution sensor
data. Their setup includes an aperture mask that processes the incoming video stream,
followed by a downsampling operation, reducing the resolution of the data to match the
sensor. Their proposed aperture mask is compatible with nonlinear reconstruction. This
allows them to superimpose frames originating from a wider field of view and then perform
disambiguation, effectively recovering a much larger field of view than would be possible
with other masks.
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Figure 4.24: The Diagram of the Ghost Imaging Paradigm.

The trade-off between spatial and temporal video resolution was also addressed by encoding
the temporal information in a high-speed video in a single frame Serrano et al. (2017); Liu
et al. (2013); Hitomi et al. (2011). The work uses a technique called sparse coding, which
identifies a representation of the data in a sparse dictionary of atoms. The benefit of
sparse coding is also used to recover high quality HDR images using single coded camera
exposures Serrano et al. (2016). The image can also be represented using features extracted
from the data in an unsupervised manner in a process called convolutional sparse coding.
This approach leads to faster and better solutions than the state-of-the-art Heide et al.
(2015).

Other examples of compressive imaging setups are given in Wakin et al. (2006b); Pitsianis
et al. (2006); Takhar et al. (2006); Romberg (2008); Watts et al. (2014); Gan et al. (2008);
Som and Schniter (2012); Lohit et al. (2018); Keller and Heidrich (2001).

4.4.2 Ghost Imaging
So far, all methods presented generate images from the recorded light rays arriving from a
target scene. This is not the case for ghost imaging, which is based on a quite interesting
principle. A light source generates a beam that is split in two: the first outgoing beam is
captured by a pixel array, often based on a charge-coupled device (CCD) camera, and the
second beam intersects an object of interest, and then it converges into a single pixel sensor,
also known as bucket detector. Even though the light reaching the CCD did not intersect
the object, its intensity in each pixel can be correlated with the intensity captured by the
bucket detector to acquire the shape of the object in question Shapiro (2008).

The interpretation of these correlations ranges from classical intensity correlations to quan-
tum correlations, and is not a straightforward problem. A comparison between these
correlations can be found in Gatti et al. (2004). It was also shown that in order for the ghost
imaging scheme to work, it is crucial to use incoherent light beams, consisting of photons
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with different phase and frequency Gatti et al. (2006). The classical setup for ghost imaging
is depicted in Fig. 4.24.

There have been several variations around the ghost imaging setup. For example, instead
of measuring the transmitted photons, the bucket detector can capture light reflected and
scattered by the object Meyers et al. (2008). The two-detector setup can be replaced
by a single detector one Bromberg et al. (2009). This is done by calculating the field
propagation for the reference beam, typically captured by the CCD camera, thus leaving
the bucket detector as the only sensor. The transmission function of the object, which is
the main result in ghost imaging, can be computed in absolute units, therefore revealing
inherent properties about the object Ferri et al. (2010).

The light source emits several intensity patterns, each corresponding to an object sam-
ple. A novel approach to ghost imaging looks at the required sample size for a good
reconstruction, and uses compressive sensing to decrease the acquisition time Katz et al.
(2009). The intensity captured by the bucket detector for each pattern is given by
Br =

∬
T (x, y) Ir (x, y) dx dy, where T (x, y) is the transmission function, and Ir (x, y)

is the field generated by the light source. Under this interpretation, Ir acts as a sampling
kernel for T. Because natural images are sparse in carefully selected bases, the authors
showed that it is possible to achieve good image reconstructions with as little as 15% of the
Nyquist sampling rate. Ghost imaging using deep learning has also improved reconstruc-
tion accuracy while reducing the number of overall number of needed measurements Lyu
et al. (2017).

4.4.3 Spectrometry
An interesting andwell known application of imaging is to evaluate the light in the frequency
domain, or measure its spectrum. A straightforward approach is to pass the incoming light
through a collimating lens, which is a lens that generates parallel rays, and then interpose
a prism in the path of the generated parallel beam. As we know, this would cause the light
to separate into its frequency components. Then each wavelength interval can be measured
with a separate sensor James (2007).

Spectrometry is defined as the field analysing the spectra of point sources. Imaging
spectrometry, or multispectral photography is more recent, and it is based on analysing
the spectrum of an object in each of its points (8.1.3). If we look at a 2D object, then the
spectrometer generates a measurement modeled as function m (x, y, λ) where x, y are the
spatial coordinate and λ is the wavelength. A spectrometer typically scans a “2D slice” of
the measurements, where at each point one of the x, y, λ coordinates is kept constant. Each
measurement is affected by noise, and therefore can be evaluated using the signal-to-noise
ratio (SNR). The SNR of some of the common spectrometers was calculated and reported
in Harvey et al. (2000).
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From a mechanical perspective, spectrometers can be grouped in the following categories:

• Pushbroom cameras do not scan the scene, but have a camera attached on a platform
that moves forward.

• Whiskbroom cameras using gimbals, or pivoted supports allow the rotation of the
camera in a single axis to actively scan the scene.

The spectrometers make use of interference filters, which consist of optical filters that
reflect a number of pre-defined spectral bands and transmit others. A key characteristic is
that it absorbs almost none of the light in the wavelengths of interest. A linearly variable
interference filter (LVIF) uses interference films varying in thickness along one dimension.
A spectrometerwith an associatedmounted LVIF is known as awedge imaging spectrometer
Demro et al. (1995). Such a device was used to capture several photos of a mosaic and then
process them into a multispectral mosaic. A more systematic approach to spectrometry
uses a narrow wavelength disperser, known as a monochromator, and then a moving slit that
narrows it down to a single emitted wavelength. Themultitude of wavelengths generated are
then recombined with another monochromator Li and Ma (1991). To decrease the amount
of information measured, compressive sensing techniques were used in conjunction with
spectrometry Willett et al. (2007).

The reconstruction of the 3 variable function m (x, y, λ) from slice measurements is called
chromatography. It includes a tomography step that recovers the 3D data. For example, it
is possible to recover the function from five 2D slices computed with transmission gratings,
and a consumer grade camera Okamoto and Yamaguchi (1991). The 2D measurements
can also be achieved with a 1D spectrometer and a rotation mechanism Betremieux et al.
(1993).

Another distinct line of work is focused on constructing multispectral projectors, which
typically are made with lamps, diffraction devices and color filters. A notable way to
implement such a device involves separating white light into its wavelength components
using a diffraction grating, and then direct all the beams onto a digital micromirror device
(DMD). As we saw before, the DMD is a spatial modulator consisting of micromirrors that
selectively direct specific rays towards a point of interest. In this case the DMD can select
the desired wavelengths and direct them towards a prism to recombine them which allows,
in principle, generating light of any desired spectrum characteristic Wall et al. (2001);
Mackinnon et al. (2005); Brown et al. (2006); Farup et al. (2007).

Chapter Appendix: Notations
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Notation Description

m (x, y) Measurements at location (x, y)
PSF Point spread function

I (x, y) Irradiance at location (x, y)
f Focal length

{gp } Orthonormal basis

G Orthonormal basis {gp } stacked in a matrix column-wise

{dp } Sampling kernels

D Sampling kernels {dp } stacked in a matrix row-wise

y Measurements

f Signal

c Signal coefficients

g (x) Image with spatial co-ordinates x

MVmax (x) Centered modulo operation

Vmax Maximum recordable sensor voltage

KN Bohr–Favard constant

BN B-spline of order N

m (x, y, λ) Measurements at location (x, y) for wavelength λ
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Figure 4.1: The aperture function (up) and the magnitude of its Fourier transform (down)
in the case of aperture coded imaging

Exercises

1. Aperture Coding
As we saw in this chapter, by exposing selectively smaller regions within the aperture
we can learn more about the light field captured. Projected in 1-D, an aperture can be
described by a function such as

a(x) = 1[−5,−3] (x) + 1[−1,2] (x) + 1[4,6] (x) .

Here, we denote by 1[−5,−3](x) a function that is 1 inside [−5,−3] and 0 otherwise. Let
us define its Fourier transform as

F a (ω) =
∫
R

a(x)e− ωxdx.

The aperture function a (x) and the absolute value of its Fourier transform are depicted
in Fig. 4.1.

a) Fourier Transform
Using the properties of the Fourier transform, derive below the expression of F a (ω)
analytically.
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b) The Modulation Theorem
The aperture can be coded by placing a mask between the lens and the sensor, as
is the case in Dappled photography. This involves an important result called the
modulation theorem.

Prove that

F {cos (ω0x) s(x)} (ω) = π [F s (ω − ω0) + F s (ω + ω0)] ,

where s(x) is an input signal.

c) Image Blurring
When capturing a blurred image with coded aperture we can estimate the scene depth.
Let us look at an example on how to blur and then deblur an image.

Feel free to capture your own image or use the one provided in this example. Reduce
the image to a resolution of 220 × 220, and then convolve it with a blur kernel -
a matrix of ones with size 22 × 22. The kernel must be normalised a priori, i.e.,
dividing it by the sum of its elements, in order to ensure that the image values are in
the same range. The result should be similar to the one in Fig. 4.2. Please plot your
own images.

(a) Grayscale image of Jupiter. (b) The image blurred with a matrix of
ones.

Figure 4.2: Simulating the out of focus blur effect by convolving with a kernel.
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Figure 4.3: A monochromatic sensor (left) the pixels arranged in the Bayer pattern (center)
and breaking down the Bayer pattern in 3 components for each RGB color (right).

d) Image Deblurring
Compute the naive deconvolution to recover back the original image. The 2-
dimensional discrete Fourier transform can be used for this task.

2. Color Coding
In this chapter, we learned that a sensor can be coded by placing together pixels sensitive
to different colors in a certain pattern. Let us now simulate the image captured by a sensor
coded with the Bayer pattern. For this example, we need a color image. Even though
all colors have already been acquired at each pixel, we will cancel out the components
corresponding to the other colors, in order to generate a Bayer pattern.

Specifically, each color image is made up of three images, each containing the intensities
of red, green and blue respectively. We can then split each of the three images in groups
of 4 adjacent pixels, as in Fig. 4.3. For the red image, we keep only pixel 4 and cancel
out the other pixels. The same is repeated for the other 2 colors, such that we end up
with a Bayer pattern.

The resulting image, depicted in Fig. 4.4, is similar to an image captured by a digital
camera with its sensor pixels arranged in a Bayer pattern.

a) Generating the Bayer Pattern
Now plot and display your own Bayer pattern image. In order for the pattern to be
visible, keep the resolution low, around 100 × 100.

b) Image Demosaicing
As we have seen in the chapter, now we need to recover the original image before
mosaicing, in a process called demosaicing. Because we set a number of pixels on 0,
we now lost 2/3 of the information from the original image, as shown in Fig. 4.3.

Even so, assuming smoothness conditions for the captured image, we can still recover
the original image with reasonable quality. Let us perform nearest neighbor and
linear interpolation to compute the values of the missing pixels. The resulting images
should be similar to the ones in Fig. 4.5. Please plot your own figures demonstrating
demosaicing via interpolation.
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(a) Original image. (b) Image mosaiced in the Bayer pattern.

Figure 4.4: Simulating an image captured by a sensor in the Bayer pattern.

Can you explain why each image looks in this particular way? Why does the linear
interpolation have a similar effect to blurring in the previous example?

3. Compressive Imaging
Here we will analyse how the theory of compressive sensing can be used to generate
compressed images. We use a grayscale image in this case, from which we extract a
small patch of size 40 × 40 located on an edge, as in Fig. 4.6. To compress the samples
we first turn the image I (k, l) into a vector Iv (k) of size 1600. The compressed samples
satisfy

y = D · Iv, y ∈ RM ,

where M << N = 1600, and D ∈ RM×N is a random matrix with elements drawn from
the Gaussian distribution with zero mean and standard deviation 1/N .

The recovery of the image is performed with one of the following

Îv = argmin ‖Iv ‖2 , s.t. y = D · Iv

Îv = argmin ‖Iv ‖1 , s.t. y = D · Iv .

a) Generating Compressive Samples
Increase M until you get a good reconstruction using norm ‖·‖1 and display the results
for ‖·‖1 and ‖·‖2. The reconstructions using 70% of the samples for the proposed
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(a) Nearest neighbor interpolation. (b) Linear interpolation.

Figure 4.5: Reconstructing the original full resolution image via demosaicing with nearest
neighbor and linear interpolation.

image (M = 1120) are given in Fig. 4.6. Why does the result look so noisy when
using ‖·‖2?

b) Selecting the Number of Compressive Samples
In the following let us define the the reconstruction error as

Error = 100 ·

���Îv − Iv
���

2
‖Iv ‖2

(%) .

Plot the error function for reconstructing the image patch using ‖·‖1 and ‖·‖2 as a
function of the number of compressed samples M . Then result should look similar
to Fig. 4.7. In order to get consistent results, make sure you generate a large random
matrix D and then pick the first M lines for each iteration.

How can it be explained that ‖·‖2 leads to better results than ‖·‖1 when M is small?
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(a) Original grayscale image
patch.

(b) Recovery using norm
‖ · ‖2.

(c) Recovery using norm
‖ · ‖1.

Figure 4.6: Compressed image reconstruction using 30% fewer samples than the number
of pixels in the original image.
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Figure 4.7: The reconstruction error as a function of the number of compressed samples
M .



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

5 Temporally Coded Imaging

In recent years, many approaches have been proposed to capture the high dimensional
plenoptic function via its low dimensional measurements. This is made possible by intro-
ducing diversity in the measurements. This idea is explained in the Fig. 5.1. For example
emerging from multiple views leads to viewpoint diversity. Similarly, illuminating a scene
from different positions leads to illumination diversity. The redundant information, in either
case, is then used to reconstruct the plenoptic function. Redundancy in measurements may
also be introduced from spatial coding. As we have seen before, in the case of dappled
photography, coding the sensor leads to the recovery of the four-dimensional lightfield from
a two-dimensional image.

In this chapter, we will focus on a different aspect of the plenoptic function that helps us
go beyond the steady scene assumption. In particular, if we consider the speed of light to
be finite, then the information in the echoes of light can be harnessed in unconventional
ways. This is because when the light interacts with a scene, the information about the scene
is parametrically encoded in the time-delay of light arriving at the sensor. This recently
emerging field of research is known as Time Resolved Imaging (TRI) or Time-of-Flight
(ToF) Imaging. TRI fundamentally combines time-stamped photos with computational
methods to redefine a conventional camera.

This newway of reinterpreting the camera directly leads to applications such as 3-D imaging
as well as fluorescence lifetime imaging. Beyond conventional applications, in 2012, Velten
and colleagues in Velten et al. (2012a) demonstrated that the information in time delays can
be used for non-line-of-sight imaging.

The goal of this current chapter is to develop an understanding about imaging a scene at
different timescales. The technological challenge behind this idea is that capturing time
information at the speed of light requires exorbitant sampling rates and very sophisticated
apparatus. However, both of these restrictions can be relaxed by using computational
imaging centric approaches. The key idea here is to recover the temporal information using
computational approaches.
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Figure 5.1: Conceptual Diagram Showing Different Mechanisms for Creating Diversity in
Measurements when Capturing the High Dimensional Plenoptic Function.

5.1 A Brief History of the Time-of-Flight Revolution

The ToF principle exploits the idea that distance and time are proportional quantities. As
the name suggests, ToF is the round trip time between the source and the destination taken
by a particle or a wave. Hence, knowing one entity is equivalent to knowing the other.
Nature is replete with examples that rely on the ToF principle. For example, bats, dolphins
Au and Benoit-bird (2003) and visually impaired human beings use the ToF principle for
navigational purposes.
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Figure 5.2: A Brief History of the Time-Resolved Imaging Revolution.

From a chronological standpoint, the use of sound waves was known to human beings way
before the notion of electromagnetic waves came to be known. Human beings have known
to use stones for estimating the depth of wells for millennia. One of the earliest attempts
using electromagnetic waves for ToFmeasurements traces back to an experiment conducted
by the Italian scientist Galileo, who together with his assistant, wanted to estimate the speed
of light. It is well known now that the speed of light is

3 × 108 m/s,

which was unknown at the time of Galileo, who used two far apart hills to time the flicker
of a lantern to estimate the speed of light. Unfortunately, this choice of distance was not
adequate given the speed of light and hence, his experiment was inconclusive.

Making progress on this front, the Danish astronomer Ole Römer worked with planetary
distances and overcame the hurdle in Galileo’s experiment. About two hundred years
later (circa 1849), French physicist Hippolyte Fizeau was the first to estimate the speed of
light. There on, Albert Abraham Michelson, improving upon the previous experiments of
Hippolyte Fizeau and Foucault, used a laboratory setup to estimate the speed of light to be
2.99864 × 108 m/s in 1879.

Further revolutions, such as the discovery of the photoelectric effect by Albert Einstein in
the 1900s followed by the development of the electronic imaging sensors (CCD/CMOS), led
to the development of consumer grade, mass producible optical ToF sensors. An example
of such a device is the popular Microsoft Kinect XBox One released in 2013. A brief
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history of major scientific and technological revolutions culminating into the modern day
ToF sensor technology is shown in Fig. 5.2.

Figure 5.3: Example of a 3D Image. We show the amplitude image (or the conventional
digital image), the depth image and 3D images seen from multiple viewpoints.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

5.2 Optical Time-Resolved Imaging 167

In contrast to the conventional image or a photograph produced by imaging sensors, the
ToF sensors capture 3D images. This is made possible by recording two images per
exposure: an amplitude image and a depth image. The amplitude image is the standard
two-dimensional photograph. On the other hand, at each pixel, the unique depth image
represents the corresponding distance in the scene. This is based on the ToF information.
The combination of the amplitude and depth images produces the 3D image. We show the
amplitude, depth and resulting 3D images in Fig. 5.3.

Early scientific instrumentation for computational imaging based on the ToF principle
required high quality equipment that is often fragile, prohibitively expensive and constrained
to controlled laboratory environments. This is because fundamental to the ToF principle is
the fact that the speed of light is assumed to be finite. This, in practice, is achievable only
when electro-optical elements of the imaging system are extremely precise. However, in the
context of the gaming and entertainment industry, a number of consumer companies such
as Mesa Imaging, Microsoft and PMDtec have developed consumer-grade ToF sensors that
are not only affordable but also alleviate all the issues associated with their expensive and
sensitive counterparts—custom designed scientific hardware.

While optical ToF sensors are a recent phenomenon, other ToF systems such as ultrasound,
seismic and radar technologies have been around for decades. More recently, terahertz
imaging systems (also based on ToF principle) have become increasingly popular. The
knowledge transfer between optical and other ToF systems is far from reality. Each ToF
modality has its own idiosyncratic constraints which stem from the physics of the problem.
However, there are commonalities that are shared by all of these systems.

5.2 Optical Time-Resolved Imaging

In conventional imaging, each sensor pixel integrates the photo-generated carriers over a
time interval, creating a low-dimensional projection of the plenoptic function. The time
window of the exposure (or integration) is typically in the range of milliseconds. Hence,
conventional digital sensors provide a count of photons reaching each pixel, producing a
photograph. Such a photograph lacks any time-resolved information. On the other hand,
during the time of exposure, the photons travel distances that are much larger than the scale
of the scene and this detail can provide information about the scene that is not available
with a conventional image. Said differently, at the end of the imaging process, one can only
estimate the number of photons that arrive at each pixel and not the time-of-arrival of each
of those photons. Such an information loss is unavoidable with a conventional imaging
sensor.

To overcome this barrier, time-resolved imaging sensors bring the time dimension to imag-
ing, eventually being able to image the light in motion, as it propagates through the scene
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Velten et al. (2012a). When working time scales at the speed of light, a depth resolution on
the order of millimeters translates into picosecond time resolution. It is not possible to build
large arrays of conventional pixels that can control the integration windows of the order of
picosecond or sub-picosecond resolution. Consequently, there is a natural trade-off,

Spatial resolution Time resolution
vs

Number of Pixels in the Imager Time-scale of Exposure

Reconciling this fundamental trade-off, there is different time-resolved imaging hardware
available namely,

• Gated cameras,

• SPAD arrays,

• Ultra-fast probing with a single detector,

• Ultra-fast probing with streak cameras,

• Lock-in sensors (coded and continuous-wave).

Each of these imaging modalities is an example of an active imaging system. In such
systems, the scene is illuminated with a light source and reflected information is captured
as a temporal signature at each pixel. Hence the measurements can be written as,

m (x, y, t)

where (x, y) denotes that spatial coordinates and t denotes the time. For a single-pixel
time-resolved sensor, we plot the measurement in Fig. 5.4.

As we have mentioned, time-resolved sensors are active sensors, depending on the active
mode of operation, they may be classified as impulse based or continuous-wave sensors.
As the name suggests, this classification is based on the shape of the active illumination,
which in turn affects the temporal resolution. For sub-nanosecond and picosecond range
illumination, the pulse shape resembles a spike in time and hence, this class of sensors
are referred to as impulse based systems. When working with wave-like illumination, the
current sensors are able to generate temporal waveforms (typically periodic) in the range
of few megahertz to few hundred megahertz. Such sensors are known as continuous-wave
sensors. In Fig. 5.5, we show different time-resolved imaging sensors together with their
spatio-temporal parameters.

Next, we present a general image formation model that is common to most of the time-
resolved imaging systems.
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Figure 5.4: Time-resolved Information at a Single Pixel. (a) The case when a signal is
backscattered from a single object. (b) The case when the signal is backscattered from two
objects. For instance, when imaging through a window pane. (c) The case in (b), but a more
challenging scenario when reflections take place from closely spaced objects. Recovering
individual light paths in this case is known as super-resolution.

5.3 Time-Resolved Image Formation Model

The time-resolved imaging systems follow the imaging pipeline shown in Fig. 5.6. Its basic
elements are as follows.

5.3.1 Probing Function p (t)
Probing function denoted by p (t) represents the waveform emitted by the ToF sensor’s
illumination unit.

Classes of Probing Functions
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Figure 5.5: Different Time-resolved Imaging Sensors Together with their Spatio-Temporal
Parameters. Sub-nanosecond and picosecond range illumination resembles a spike and
hence, SPAD and Streak-tube based sensors are known as impulse imaging devices. Lock-
in sensors on the other hand use a periodic waveform with frequencies in the range of few
megahertz to few hundreds of megahertz. Such sensors are known as continuous-wave
imaging sensors.

Figure 5.6: Time-resolved Imaging Pipeline.

The probing function may be a time-localized pulse, e.g., a B-Spline, Guassian, or
Exponential-Gaussian mixture. Alternatively, this may be a continuous-wave. This is
decided by the time-resolved imaging apparatus being used.

• Streak-tube Velten et al. (2012a); Wu et al. (2013) and SPAD detectors Hernandez-
marin et al. (2007) offer pico-second range timing and hence, the illumination can be
characterized as an impulse or the Dirac Delta function δ (t).
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Figure 5.7: Example of a Scene with One Light Path.

• In the case of continuous-wave imagers that use the lock-in mechanism, one may
either use sinusoidal illumination (this is the case with Microsoft Kinect XBox One
Bhandari et al. (2014a) or maximum length sequences Kadambi et al. (2013) to achieve
time-localization.

• Other examples include the use of first and second order derivatives of Gaussian pulses
which are used in ultra wideband systems Chen and Kiaei (2002).

5.3.2 Scene Response Function h (t, t ′)
Scene Response Function or SRF denoted by h (t, t ′) models the transfer function of the
scene. This may be a filter, a shift-invariant function, e.g.,

h (t, t ′) = hSI (t − t ′) ,

or even a solution to a partial differential equation. This only depends on the scene that one
is interested in imaging and not the modality of the time-resolved imaging system.

Classes of Scene Response Functions
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Figure 5.8: Examples of Scenes that Lead to Two Light Paths.

• Single Depth Imaging. This setting is described in Fig. 5.7. In this case, there is a
one-to-one mapping between the scene and the sensor. At any given pixel, the SRF in
this case is written as,

h (t, t ′) = Γ1δ

(
t − t ′ − 2d1

c

)
= Γ1δ (t − t ′ − t1) , (5.1)

where Γ1 denotes the reflectivity and t1 = 2d1/c is the time-delay due to the object at a
distance d1 from the sensor.

• Multiple Depth Imaging. As described in Fig. 5.8, there may be scenes in which more
than a single light path contributes to a given pixel in the sensor. In this case, multiple
delays need to be accounted for at the detector. Consequently, when accounting for K
light paths, the SRF is written as,

hK (t, t ′) =
K−1∑
k=0
Γkδ

(
t − t ′ − 2dk

c

)
=

K−1∑
k=0
Γkδ (t − t ′ − tk) , (5.2)

where Γk and tk for k = 0, · · · ,K − 1 are the 2K unknown parameters.
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Figure 5.9: Fluorescence Lifetime Imaging.

• Fluorescence Lifetime Imaging or FLI. FLI is a significant research area spanning
many engineering applications. Knowledge of a sample’s fluorescence lifetime allows
applications such as DNA sequencing, tumor detection, fluorescence tomography and
high resolution microscopy. In this case, temporal excitation is modeled by a first order
differential equation whose solution is the SRF is given by Bhandari et al. (2015),

h (t, t ′) = hDepth (t, t ′) + hDecay (t, t ′) ,

where hDepth (t, t ′) is defined in (5.2) and represents a delay of t1 due to the fluorescence
sample’s placement at depth 2d1/c meters from the sensor and,

hDecay (t, t ′) = µ exp
(
− t − t ′ − τ

λ

)
Π (t − t ′ − τ) ,

where µ and λ are emission strength and the lifetime of the fluorescent sample, respec-
tively and Π (t) is the Heaviside function. The SRF is plotted in Fig. 5.9.

• Transient Imaging and Subsurface Scattering. Decomposing global light transport
in terms of its temporal response leads to the study of transient phenomena. The first
steps in this direction were set in Wu et al. (2013). Using time-resolved information, a
scene can be decomposed into its constituent light transport elements. In particular, a
scene can be decomposed into

� Direct Component, corresponding to all the first bounce light that arrives at the
sensor.
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� Subsurface Component, corresponding to short range scattering.

� Inter-reflection Component, corresponding to longer range scattering. Based on
this model, the transient SRF is written as,

hTr (t, t ′) = hD (t − t ′)︸������︷︷������︸
Direct Reflection

+ hI (t − t ′)︸�����︷︷�����︸
Inter-reflections

+ hS (t − t ′)︸�����︷︷�����︸
Subsurface

,

where the individual contributions are as follows:

� Direct Component:
hD (t) = αDδ (t − 2dD/c) .

� Inter-reflections:

hI (t) =
K−1∑
k=0
αkδ (t − 2dk/c) .

� Subsurface Scattering:

hS = δ (t − 2dS/c) ∗
(
αSe−βSt1t�0 (t)

)
.

5.3.3 Reflected Function r (t)
The reflected function is the back-scattered signal arising from the interaction between
the probing signal and the SRF. The reflected function is modeled as a Volterra/Fredholm
integral,

r (t) =
∫
Ω1

p (τ) h (t, τ) dτ. (5.3)

Whenever the SRF is a shift-invariant kernel, i.e., , h (t, t ′) = hSI (t − t ′), the reflected signal
is simply a convolution/filtering operation between the probing function and the SRF,

r (t) = (p ∗ hSI) (t) .

5.3.4 Instrument Response Function Ψ (t, t ′)
The instrument response function or the IRF denoted byΨ (t, t ′)models the transfer function
of the electro-optical elements of the ToF sensor. For example, in conventional digital
cameras, the spatial IRF is the point spread function of the lens.

Classes of Instrument Response Functions

• LiDAR Systems. In the case of Single-photon Avalanche Diode (SPAD) based LiDAR
systems, as shown in literature Buller and Wallace (2007); Hernandez-marin et al.
(2007) the IRF due to SPAD detectors may be modeled as a parametric, shift–invariant
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kernel of form,

ΨL (t) = α




θ
(
−(T1−T0)2

2σ2

)
θ
(
t−T1
λ1

)
, t < T1

θ
(
−(t−T0)2

2σ2

)
, t ∈ [T1,T2)

θ
(
−(T2−T0)2

2σ2

)
θ
(
− t−T2

λ2

)
, t ∈ [T2,T3)

θ
(
−(T2−T0)2

2σ2

)
θ
(
−(T3−T2)2

λ2

)
θ
(
− t−T3

λ3

)
, t � T3

, (5.4)

where θ (t) = e−t and L is an unknown parameter vector,

L = [α σ T0 T1 T2 T3 λ1 λ2 λ3]T . (5.5)

• Lock-in Mechanism Based ToF Sensors. This is one of the most widely used mech-
anisms for consumer-grade time-resolved imaging. In this case, IRF is used as the
probing function itself,

Ψ (t, τ) = p (t + τ) .

• Streak-tube. In this case, as pointed out in (Wu et al. 2013), the IRF may be modeled
as a Gaussian profile,

Ψ (t, t ′) = exp
(
−(t − t ′)2

2σ2

)
.

5.3.5 Continuous-Time Measurements m (t)
Measurements denoted by m (t) are a result of sensing the reflected signal via the electro-
optical elements of the ToF sensor. Continuous-time measurements are modeled as,

m (t) =
∫
Ω2

r (t ′)Ψ (t, t ′) dt ′. (5.6)

5.3.6 Discrete-Time Measurements y [n]
The sampling operator maps the continuous-time measurements in to digital samples,

S : m (t) → y [n] = m (nT) , n ∈ Z,T > 0.

The ToF sensor stores discrete measurements by sampling continuous-time signal m (t) and
this results in the discrete sequence y [n] = m (nT) ,n ∈ Z where T > 0 is the sampling
interval.

The above general model applies to modalities beyond the optical time-resolved imaging
systems. Whereas the probing and the instrument response functions are characterized by
the imaging modality at hand, the scene response function is entirely characterized by the
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scene that we are interested in imaging. The different variations of the probing functions,
namely SRF and IRF, lead to different forms of computational imaging problems.

In many practical cases of interest, both the SRF and the IRF are shift-invariant. In that
case, the measurements can be written as a convolution product or m (t) = (p ∗ h ∗ Ψ) (t).
Whenever the IRF is a function of the form Ψ (t, τ) = Ψ (t + τ), the measurements amount
to m (t) = (r ⊗ Ψ) (t) where ⊗ denotes cross–correlation operation. “Lock-in” sensors
operate on this principle.

5.4 Lock-in Sensor based 3D Imaging

5.4.1 Continuous Wave Imaging
ToF sensors such as the Microsoft Kinect XBox One use a continuous wave based probing
function p (t) = 1 + p0 cos (ωt) , p0 < 1 where ω is the modulation frequency and p0
is the modulation amplitude. With the SRF defined in (5.2), the reflected signal reads
r (t) = Γ0p (t − t0) where t0 = 2d0/c. Again, the lock-in sensor acts as an electronic
homodyne detector such that Ψ (t, τ) = Ψ (t + τ) and the measurements result in Bhandari
et al. (2014b); Gupta et al. (2015),

m (t) = Γ0

(
1 +

p2
0

2
cos (ωt + θω)

)
, θω ∈ [0,2π), (5.7)

where θω = ωt0 = 2d0ω/c is the frequency dependent phase. The ToF sensor records
discrete measurements of form, mk = m (kT) with T = π/2ω and uses a phase estimation
algorithm commonly known as the “Four Bucket Method” Foix et al. (2011) to estimate
the unknown parameters Γ0 and d0. For a given modulation frequency, this method works
with 4 discrete measurements,

m0 m1 m2 m3

that are used to form a complex number zω ∈ C,

zω = (m0 − m2) +  (m3 − m1) ,

where, [
m0 m1

m2 m3

]
=
Γ0
2

[
2 + p2

0 cos (ωt0) 2 − p2
0 sin (ωt0)

2 − p2
0 cos (ωt0) 2 + p2

0 sin (ωt0)

]

The scene parameters are then estimated by,

Γ0 =
|zω |
p2

0
and d0 = c

∠zω
2ω
.
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Figure 5.10: TheRawData-Samples Based on aContinuousWave, Time-of-Flight Imaging
Sensor.

In fact, the depth images shown in Fig. 5.3 are obtained using this method with ω = 2π f
where f = 50 MHz. The raw data-samples corresponding to the experiment are plotted in
Fig. 5.10.

5.4.2 Coded Time-of-Flight Imaging
In the previous part, sinusoidal illumination was studied for time-resolved imaging. As an
alternative mode of imaging, time-localized pulses may also be used to probe the scene.
Even though the probing function is time-localized, it may be modeled as a periodic signal
of form p (t) = p (t + ∆) , ∆ > 0. While specialized scientific instruments, such as the
streak tube, may be able to produce a pulse that mimics the Dirac’s delta distribution δ
(Velten et al. (2012a)), this form of precision is impractical for consumer-grade instruments.
In practice, Pseudo-Noise (PN) sequences Buttgen and Seitz (2008) or maximum-length
sequence (MLS) Kadambi et al. (2013) are an optimal choice of probing function in regards
to time-localization. For further study on choice of optimal codes, we refer to Gupta et al.
(2018).

In this case, given SRF defined in (5.2), the reflected signal reads,

r (t) = Γ0p (t − t0) ,
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with delay t0 = 2d0/c. Due to the lock-in sensor architecture Foix et al. (2011), which
constraints the IRF to be of the form,

Ψ (t, τ) = p (t + τ) ,

the measurements simplify to,

m (t) = (r ⊗ p) (t) = (r ∗ p) (t) ,

where ⊗ denotes the cross–correlation operation and r (t) = r (−t). Due to the lock-in
constraint, we can rewrite the measurements in terms of p (t) as,

m (t) = Γ0 (p ∗ p) (t − t0) .

Consequently, we may write φ = p ∗ p. The ToF is then estimated by estimating the delay
using,

t̃0 = arg max
t0

m (t) = arg max
t0
φ (t − t0) .

Whenever p (t) is modeled to be some parametric waveform, such as a Gaussian function, B-
spline or a combination of parametric pulses, parameter estimation techniques may be used
to estimate the ToF t0, and the reflection coefficient Γ0. However, this may not be the case
in practice because of model mismatch or the physical aspects of light propagation. In such
a setting, it is effective to use the property of bandlimited approximation: approximate
the probing function, and hence φ, with the first few dominant Fourier components,

p̃ (t) =
∑

|m |�M0

p̂me mω0t with p̂m =
1
∆

∫ ∆

0
p (t) e− mω0tdt, (5.8)

where ω0 = 2π/∆ is the fundamental frequency and ∆ is the maximum operating range of
the ToF sensor. The reasons behind this choice are that

• Most electronic/optical instrumentation is approximately bandlimited due to physical
constraints.

• The probing function may not admit a parametric representation. Even if the probing
function assumes a parametric representation, bandlimited approximation via Fourier
series coefficients circumvents the estimation of parameters of the probing function.

The utility of bandlimited approximation property is demonstrated via experiments shown
in Fig. 5.11. Starting with a maximum length sequence Kadambi et al. (2013), we design
a probing function. We plot φ = p ∗ p together with its bandlimited approximation,

φ̃ (t) =
∑

|m |�M0

φ̂me mω0t with φ̂m =
1
∆

∫ ∆

0
φ (t) e− mω0tdt, (5.9)



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

5.5 Application Areas 179

Figure 5.11: Bandlimited Approximation of Auto-correlated Probing Signal (φ = p ∗ p)
in Time-domain ToF Setup. The low-pass property is evident from its Fourier spectrum.
This is a result of an experiment with ∆ = 310 ns and M0 = 30.

obtained by retaining first M0 Fourier series coefficients, φ̂m = p̂2
m. We are thus able to

rewrite measurements as,

m (t) = Γ0φ (t − t0) ≡ C0
∑

|m |�M0

φ̂me mω0t,

where the complex-valued constant C0 = Γ0e− ω0t0 is the constant to be estimated.

5.5 Application Areas

In this section, we discuss the various applications of temporally coded imaging that have
emerged in the last decade and cover the areas of scientific and bio-imaging, computer
vision and computer graphics among other topics.

5.5.1 Diffuse Imaging
In diffuse imaging, we are interested in recovering scene information which is covered by
a diffusive object. The scenario is shown in Fig. 5.12. In the context of our discussion,
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Figure 5.12: Experimental Setup forDiffuse Imaging. Here, the goal is to be able to read the
placard which is covered by a diffusive surface. While conventional measurements would
seem corrupted by noise (due to specular reflection), when working with time-of-flight
sensors, it is possible to recover the hidden information.

the scenario leads to a scene response function in (5.2) which arises due to the schematic
shown in Fig. 5.7. Following the discussion in Section 5.4.2, the reflected signal reads,
r (t) = Γ0p (t − t0) + Γ1p (t − t1) where, as usual, {Γ0,Γ1} are the unknown amplitudes
and {t0, t1} are the unknown delays due to the depth of the respective reflections. As
shown in Kadambi et al. (2013), when working with the coded time-of-flight system, the
measurements are given by,

m (t) = Γ0φ (t − t0) + Γ1φ (t − t1) where φ = p ∗ p.

For a given pixel, the measurements are plotted in Fig. 5.13 and the probing function used
in this experiment is shown in Fig. 5.11. There are different methods for recovering the
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Figure 5.13: Coded Time-of-flight Measurements at a Given Pixel Corresponding to the
Experimental Setup in Fig. 5.12. The probing signal used in this experiment is shown in
Fig. 5.11.

unknown SRF from the measurements and one of the most common approaches leverages
the idea of sparsity in that there are very few reflections in the scene when compared to
the dimensionality of the measurements. This essentially arises due to the fact that the
SRF defined in (5.2) is a sparse signal that consists of spikes. To this end, the sampled
measurements m (nT) , n = 0, · · · ,N − 1 can be stacked into a vector m. According to the
measurement model, the measurements can be written as,

m = Ts,

where,

• T is a Toeplitz/Convolution matrix comprising of shifts of the pulse φ, that is, each
element of the matrix T is of the form, Tn,k = φ ((n − k)T)where T is the measurement
sampling rate.

• s is a K-sparse vector, that is, a vector of size N of which K elements are non-zero.

According to this model, we are interested in recovering a sparse vector s from the mea-
surements m, that is,

s∗ = arg min
s

‖m − Ts‖2
2 subject to ‖s‖0 � K,

or, said differently, find a vectorTs that is closest to the measurementsm in the least-squares
sense such that the unknown vector s has at most K non-zero values. This problem can be
solved using the Orthogonal Matching Pursuit (OMP) algorithm Elad (2010) and this
is the approach followed in Kadambi et al. (2013). In our example, K = 2 and the result
of running the OMP algorithm is that we are able to find the vector s whose elements are
{Γ0,Γ1}. The corresponding non-zero locations in the vector provide the information about
{t0, t1}. The result is shown in Fig. 5.14. By processing the time-resolved information at
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Figure 5.14: Recovering the Unknown (sparse) Scene Parameters Using the Orthogonal
Matching Pursuit Algorithm.

each pixel, we are able to recover the hidden information that lies behind the diffuser. This
is shown in Fig. 5.12.

5.5.2 Light-in-Flight Imaging
While ultra-fast light-in-flight imaging was proposed in Velten et al. (2012a,b, 2013), the
apparatus used in this work consisted of the streak tube. Replacing this sophisticated
and expensive imaging system by a simpler, consumer-grade time-of-flight sensor, in their
work, Heide and co-workers Heide et al. (2013) demonstrated an alternative approach to
low-budget light-in-flight imaging. Following the insights developed in (Wu et al. 2013),
Heide and co-workers modeled the scene information at pixel as a measurement of the
form,

m (t) =
K−1∑
k=0
Γkgσ (t − tk)︸���������︷︷���������︸

Reflections

+ ske−λk (t−tk )
︸��������︷︷��������︸

Scattering

,

where φ (t) = gσ (t) is modeled as a Gaussian pulse and {sk, λk} are the scattering co-
efficients . By resorting to an alternating minimization approach, the authors are able to
recover the unknown scene parameters, namely,

K−1⋃
k=0

{Γk, sk, λk, tk},

which in turn allows for visualization of the light-in-flight phenomenon. This is shown in
Fig. 5.15a. By ignoring the scattering coefficients sk, k = 0, · · · ,K − 1, one is left with a
K-sparse signal and in that case, the theory of Section 5.5.1 applies. The corresponding
light-in-flight phenomenon was presented in Kadambi et al. (2013). We show the results in
Fig. 5.15b. A frequency domain analysis for recovering transient information corresponding
to the light-in-flight imaging setup was considered in Lin et al. (2017). An inexpensive
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Figure 5.15: Time Slices of Different Scenes Demonstrating Light-in-flight Imaging. (a)
Adapted from Heide et al. (2013). (b) Adapted from Kadambi et al. (2013).

time-of-flight camera was proposed to perform low-budget transient imaging Heide et al.
(2013). Light transport analysis of the time-resolved phenomenonwas discussed inO’Toole
et al. (2014). A survey of the recent advances in transient imaging from a graphics and
vision perspective is given in Jarabo et al. (2017).

5.5.3 Multi-Depth Imaging
Asmentioned earlier, almost all consumer-grade sensors, such as theMicrosoft Kinect Xbox
One Bhandari et al. (2014b) and the PMD sensor Bhandari et al. (2014), are based on the
continuous-wavemodel, that is, the probing signal is of the form p (t) = 1+p0 cos (ωt) , p0 <

1 where ω is the modulation frequency and p0 is the modulation amplitude (cf. Section
5.4.1). Such models are designed to work with single depth only. In practice, however,
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Figure 5.16: Continuous-wave Imaging with Two Depths. (a) Scene Response Function
in the time-domain. (b) Scene Response Function in the Fourier Domain. (c) Multiple
frequency measurements amount to a phasor addition and the identification of the scene
response function is equivalent to estimation of the phasor components.

the scene may be composed of multiple depths (see for example, Fig. 5.7) and in this case,
the scene response function (SRF) is given by (5.2). For the case of two depths, we show
the SRF in Fig. 5.16a. Consequently, the continuous-wave measurements take the form of
(assuming the p0 = 1 in the definition of the probing signal)

m (t,ω) = 1
2

e ωt
K−1∑
k=0
Γke ωtk ,

which is a sum of K complex exponentials or phasors. Since the probing function is a
sinusoidal waveform, from basic linear systems theory, we know that sinusoidal functions
are eigen-functions of a linear system and hence, the measurements amount to observing
Fourier Transform of the scene response function at the modulation frequency; this is
shown in Fig. 5.16b. Clearly, given measurements, mk = m (kT,ω) with T = π/2ω, it
is impossible to discern the multiple depth information encoded in the unknowns {Γk, tk}
where k = 0, · · · ,K − 1 because the different phases add up for a given frequency. To
overcome this problem, the idea used in literature is to usemultiple frequencymeasurements
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which trace a path parameterized by individual phasors, that is,

m (t,ω) ∝ Γ0e ωt0

︸��︷︷��︸
Phasor 1

+ Γ1e ωt1

︸��︷︷��︸
Phasor 2

+ · · · + ΓK−1e ωtK−1

︸���������︷︷���������︸
Phasor K

,

and for the case with K = 2, we show the resulting measurements and the phasors in
Fig. 5.16c. Given multiple frequency measurements, the individual phasors can be esti-
mated using theOrthogonalMatching Pursuit Bhandari et al. (2014) or sparse regularization
Freedman et al. (2014). This specific problem is also known as spectral estimation method
in signal processing literature Bhandari and Raskar (2016); Kirmani et al. (2013) and sim-
ilar algorithms can be tailored for multi-depth imaging. Examples of reconstructions for
different cases are shown in Fig. 5.17. When multi-depth components are undesirable, the
setting is known as multipath interference. This topic has been studied in detail.

An ultra-fast imaging approach to capture space-time images that can separate out different
bounces of light based on path length is proposed in Naik et al. (2011). A light transport
model for mitigatingmultipath interference was discussed in Naik et al. (2015) and the same
work compares and contrasts the various approaches related with multipath interference.

5.5.4 Fluorescence Lifetime Imaging
Fluorescence lifetime imaging or FLI is an established tool for estimating useful informa-
tion that is otherwise unavailable from a conventional intensity image. Due to the high
precision optics and electronics involved in the setup, the imaging system is quite expensive.
This is where consumer-grade sensors such as the time-of-flight imaging system can be
leveraged. When a fluorescent sample is exposed to a continuous wave illumination at a
given modulation frequency, the interaction results in a phase shift parameterized by the
lifetime of the sample. Unlike depth imaging where phase shift is a linear function of the
unknown depth parameter, in case of lifetime imaging, the dependence of the phase on the
lifetime is a nonlinear function Bhandari et al. (2015). In particular, the observed phase
is a sum of a line (with slope depending on depth) and arctangent function of lifetime.
The observed phase is shown in Fig. 5.18. However, since the parametric form of this
relationship is known, parameter estimation allows for lifetime imaging using consumer
grade depth sensors.

5.5.5 Non-line-of-Sight Imaging
Seeing an object that is not in our line-of-sight is easy to do using mirrors. However,
mirrors are characterised by specular reflection, which allows seeing the target easily. A
wall, for example, is characterised by diffuse reflection, making it difficult to visualise the
target using traditional cameras.
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Figure 5.17: Example of Multiple Depth Imaging. (a) The case when K = 2. Measure-
ments based on the Microsoft Kinect XBox One, adapted from Bhandari et al. (2014b). (b)
The case when K = 3. Measurements based on the PMD sensor. Experiment adapted from
Bhandari et al. (2014).

This problem is addressed by a research field entitled non-line-of-sight (NLOS) imaging,
which is also discussed in 10.4. ToF techniques are more suitable in this case, because the
temporal structure of the light is the same for specular and diffuse reflections, and allow a
reconstruction of the target Velten et al. (2012a).
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NLOS imaging has a multitude of applications, from sensing in hazardous environments,
such as areas with radioactive or chemical leaks, to imaging inside machinery with moving
parts. The authors propose using a pulse of light to illuminate the occluded object. One
single point can be easily identified from its reflection. However, the reflections of multiple
scene points may overlap at the detector, leading to a loss in correspondence. This means
we don’t know which point reflected which of the pulses received by the camera.

The imaging setup is depicted in Fig. 5.19. A camera and a laser are pointed towards a wall,
and a patch is positioned behind an occluder, so that neither the camera nor the laser have
a direct line to the patch. The laser emits a pulse of light that is directed towards a point on
a wall using actuated mirrors. Some of this light is reflected diffusively three times: first
by the wall towards the object, second by the object back to the wall, and third by the wall
to the ToF camera. The laser is oriented to ensure there is no single-bounce light reaching
the camera. The distances in between the laser, the three reflection points, and the camera
are denoted r1, r2 , r3 and r4, respectively.

The problem proposed is to estimate the distances r2 and r3, which are the only unknowns
in this setup. The algorithm addressing this estimation problem using the camera measure-
ments is called backprojection Velten et al. (2012a).

In the absence of noise, the location of an occluded patch can be derived using only
measurements from 3 camera pixels. Specifically, for each pixel, all possible points in
space that could have generated a set of measurements lie on an ellipse, as depicted in
Fig. 5.20b. Therefore, in the absence of noise, the patch location can be identified as the
unique intersection of the three ellipses. In practice, the scene is split in 3D volume units,
called voxels. For each voxel, the backprojection algorithm computes the likelihood that
the patch is in that voxel based on the time-of-flight r1 + r2 + r3 + r4. The likelihood is
displayed as a heatmap in Fig. 5.20c for one laser orientation, in Fig. 5.20d for multiple
laser orientations. The final reconstruction after filtering is depicted in Fig. 5.20e.

The method proposed in Heide et al. (2014c) can recover both the object shape and the
albedo, which is the proportion of reflected incident light. Moreover, compared to Velten
et al. (2012a), this method uses a cheaper hardware setup which has no moving parts.
The capturing speed was greatly improved, and the method is more robust under ambient
illumination.

However, the recovery problem is more complex in this case, and it is addressed by making
assumptions about the model, in other words using sparsity priors. The reconstruction
is formulated as an optimization problem, where the object volume is the unknown to be
estimated from the camera measurements. The optimization problem is ill conditioned,
and it cannot be solved in its raw form. The assumptions, such as single surface reflection,
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and minimal object volume, are used as regularisers to generate a solvable optimization
problem.

This line of work was continued in Kadambi et al. (2016), where the illumination shape was
changed from a pulse to a continuous wave. This allows a custom resolution that depends
on the modulation frequency and wall shininess. Moreover, this work is the first to provide
bounds on the NLOS reconstruction.

The performance depends on the shininess of thewall, and the cameramodulation frequency
Kadambi et al. (2016). The authors characterise the relationship between the reflectivity
and resolution as nonlinear. Small improvements in reflectivity lead to large improvements
in resolution. Given the reflective properties of realistic scenes, commercial ToF cameras
can be used in the proposed setup to achieve good results for NLOS imaging.

To decrease the power consumption, the work in Buttafava et al. (2015) proposes using a
single SPAD detector, capturing light corresponding to a single pixel. This has additional
advantages such as lower cost, smaller size and reduced reconstruction time.

The observation that the first reflected photons are characterising single points of the NLOS
scene, enabled estimating the 3D NLOS scene using fewer measurements Tsai et al. (2017).
Moreover, assuming the scene can be approximated locally with planes, the proposed
algorithm allows an efficient estimation of the surface normals. Overall, the work in Tsai
et al. (2017) avoids solving complex processing tasks from NLOS imaging, such as the
elliptical tomography problem.

A new interpretation of the NLOS scene geometry allows to speed up the reconstruction up
to 1000 times Arellano et al. (2017). Specifically, the authors interpret the hidden geometry
probability map as the intersection of three space-time manifolds, defined by the generated
and NLOS scene reflected light.

Instead of estimating the scene with voxels, and recovering each voxel using the reflected
light, the work in Pediredla et al. (2017) uses a polygonal estimation composed of multiple
planar walls. They demonstrate that estimating the planes instead of voxels leads to lower
levels of noise and is compatible with larger spatial scales. Further examples and several
other state-of-the-art implementations are discussed in the context of light transport in
Section 10.4.

5.6 Summary of Recent Advances and Further Applications

Looking at lower level reflection properties such as subsurface light scattering enables
characterising the surfacematerial. For instance, it is possible to produce a two-dimensional
image of optical scattering from internal tissue microstructures Huang et al. (1991); Hee
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et al. (1993). This technique leads to capturing new low level features of the scene Su et al.
(2016).

The material of an object can be identified through the way the light interacts with it via the
scene response function h (t, t ′), also called temporal point spread function (TPSF), which
describes the way light is scattered and reflected.

The setup used for material classification in Su et al. (2016) is depicted in Fig. 5.21. As
for classical ToF imaging, a probing function is used to describe the waveform of the
illumination. Here, it is chosen as a periodic function of period ω denoted pω (t). The
light rays are scattered through the material and some are reflected towards the camera.
This process is modeled by h (t, t ′). The measurements are then correlated with a scene
independent function fω (t − φ/ω).

In order to account for the material properties, the scene response function incorporates the
delays and attenuations introduced by each light ray:

h (t, t ′) = h (t − t ′) =
∫
s∈S

hsδ (|s | + (t − t ′)) ds,

where s denotes the total length of all light rays reaching the camera hs denotes the
attenuation. Then the reflected measurement rω (t) amounts to

rω (t) =
T∫

0

pω (t ′) h (t − t ′) dt ′ =

T∫

0

h (t ′) pω (t − t ′) dt ′.

It follows that the final measurements bω,φ satisfy

bω,φ =

T∫

0

fω (t − φ/ω)
T∫

0

h (t ′) pω (t − t ′) dt ′ dt,

=

T∫

0

h (t ′)
T∫

0

fω (t − φ/ω) pω (t − t ′) dt dt ′,

=⇒ bω,φ =

∞∑
k=1

gk

T∫

0

h (t ′) cos (kω (φ/ω + t ′) + φk) dt ′, (5.10)

where gk are the Fourier coefficients of function

gω,φ (t ′) =
T∫

0

fω

(
t − φ
ω

)
pω (t − t ′) dt,
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which is periodic with period ω. Then it follows that bω,φ is computed using the Fourier
coefficients of h (t ′) the scene response function.

This result in (5.10) is extremely useful, because it means that the setup in Fig. 5.21 samples
the spectrum of the scene response function, and this can be used to uniquely identify a
material. Specifically, features are constructed by taking several measurements of bω,φ ,
which are then matched against a database of previously computed features Tanaka et al.
(2017).

5.6.1 Time-Resolved Imaging through Scattering Media
The data from correlation image sensors can be further analysed to allow processing data
in more complex environments such as scattering and turbid media . Imaging through
scattering media has many applications such as deep-tissue imaging or artwork inspection.
The work in Heide et al. (2014c) allows recovering transient, or light-in-flight images
through such environments using coding with significantly improved sparsity.

This type of imaging can be performed using a setup similar to the one in Fig. 5.21. If we
go back to the result in equation (5.10), we have that

bω,φ =

T∫

0

h (t ′) gω,φ (t ′) dt ′. (5.11)

In this new context, we are trying to estimate h (t ′), where

gω,φ (t ′) =
T∫

0

fω

(
t − φ
ω

)
pω (t − t ′) dt,

is known, and scene independent. To this end, the data is sampled in time, frequency and
phase, as follows. Let G be a N × M matrix with elements [G]i, j = gωi ,φi

(
tj
)
, b a N × 1

vector [b]i = bωi ,φi and h a M × 1 vector [h]j = h
(
tj
)
. Then (5.11) results in matrix

equation b = Gh, which is solved to estimate h.

Recall that h (t) =
∫
s∈S hsδ (|s | + t) ds, where s stands for the light path length. The

solution of b = Gh solves a rather complex problem. Besides identifying image intensities,
computing h untangles path contributions with different path lengths, which is known as
the multi-path problem.

However, solving b = Gh is not trivial, and in many cases results in an ill-posed problem.
One way to address this is by assuming a sparse representation for h (t), in the compressive
sensing framework Heide et al. (2014c). The solution of b = Gh is formulated as the
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optimisation problem:

hopt = arg min
h

‖h‖1 such that ‖b − Gh‖2
2 < ε

which is stable numerically and leads to sparse representations. The prototype used in
Heide et al. (2014c) for imaging through scattering media is depicted in Fig. 5.22, and the
results of an experiment with scattering through milk are depicted in Fig. 5.23.

We will now review some of the additional work done in imaging through scattering media.
The authors in Satat et al. (2018b) proposed a LIDAR based system for scanning through
fog. The system, based on SPAD sensors, uses a probabilistic model to distinguish between
photons reflected by the fog and the ones reflected by the target. Experiments demonstrate
imaging with good accuracy beyond the visibility range of the fog.

The calibration parameters for imaging through scattering media, such as the field of view
or illumination, can cause variability in measurements. However, it is possible to design
machine learning imaging techniques that are insensitive to these parameters on a given
range Satat et al. (2017). The authors use a convolutional neural network that leads to
results comparable to that of a time-resolved camera without the need of calibration on a
given training range.

Many time-resolved imaging techniques for scattered media select a subset of the reflected
photons, depending on their arrival time. A method using the whole range of reflected
photons can achieve a two-fold improvement in imaging resolution Satat et al. (2016).
An analytical solution has been proposed to model a highly scattering medium based on
its optical absorption and fluorescence source distribution using diffusive light Schotland
(1997). Polarimetric approaches for imaging through scattering (7.4) as well as a light
transport decomposition (10.5.3).

5.6.2 Time-Resolved Imaging Systems
Typically ToF sensors are produced with low resolution due to practical limitations. In
Li et al. (2017), the nonlinear relationship between the depth and ToF measurements
is represented as a linear imaging problem. Using this representation in conjunction
with compressive sensing techniques, the authors managed to boost the resolution of the
reconstructed image up to 4-fold.

The problem of low temporal resolution of ToF cameras can be addressed using an array of
light sources, which introduce sub nano-second time shifts in the capturedwaveformTadano
et al. (2016). This is exploited to increase the temporal resolution of the ToF imaging system
10-fold. In the case of out of focus low resolution ToF images, the resolution of the data
can be enhanced via a technique called superresolution, while simultaneously performing
deblurring Xiao et al. (2015).
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Increasing the temporal resolution of imaging devices to the picosecond-scale reveals
important information about the scene. This can be done using active illumination with
picosecond temporal resolution, which allows solving the inverse multi-path problem with
higher accuracy in the presence of noise O’Toole et al. (2017).

Most ToF imaging systems estimate the position of an object in the scene. For dynamical
scenes it is then possible to approximate the velocity using several position instances.
However, it was shown that the instantaneous radial velocity, which is the velocity along
the observer line of sight, can be measured directly. This can be done using the Doppler
effect, which creates a frequency shift in the probe signal emitted by the ToF camera Heide
et al. (2015). Additionally, the authors measured the colour, depth and velocity of a pixel
simultaneously. It is possible to increase the precision of ToF cameras from centimeter
to micrometer by designing a form of cascaded ToF, by using a Hertz-style intermediate
frequency to encode a high-frequency pathlength Kadambi and Raskar (2017).

The problem of waveform interference can also be addressed using novel hardware ap-
proaches. A new hardware system is introduced with multiple ToF cameras, which allows
synchronising exposure times and waveforms from three cameras. The system is also used
to capture radial velocity from interfered waveforms using the Doppler frequency shift
principle Shrestha et al. (2016).

ToF cameras have applications in day-to-day activities such as web-conferencing or gaming
by providing enhanced gesture recognition capabilities Kolb et al. (2010).

A novel result for ToF cameras significantly decreases the complexity of the encoded
data and associated encoder implementation. Instead of using quantization on different
amplitude levels, the work in Bhandari et al. (2020b) encodes the data into a sequence
of ±1 values. Although this leads to an information loss, the underlying time-resolved
information can still be recovered accurately in a non-iterative fashion. The setup is
compatible with both single and multiple paths of light.

5.7 Related Optical Imaging Techniques

5.7.1 Optical Coherence Tomography
In addition to widespread scanning techniques such as X-ray computed tomography, mag-
netic resonance imaging or ultrasound imaging, it is possible to image the internal structure
of biological tissues with a noninvasive technique known as optical coherence tomography
(OCT). OCT measures the optical reflections of various layers of biological tissues, and
returns its 3D shape by using the ToF information at multiple locations Huang et al. (1991).

As is the case for ToF, OCT can function with time-localized pulses or continuous wave
(CW) probing functions. The former approach can be achieved by time gating the detected
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light to separate direct transmission light from light obtained in the turbid tissue. The CW
approach utilizes low coherence interferometry. At the heart of this setup is the Michelson
interferometer. An interferometric setup is used due to the extremely high speed of light,
which would otherwise require detectors with time resolution on the scale of 10−15s. Along
one arm of the interferometer lies the tissue sample, and the other arm is the reference arm
(typically containing a movable mirror to introduce an adjustable optical path length). The
reference path is used to measure ToF information from each layer of tissue and intensity of
backscattered light. Since low coherence light is used, a fringe pattern will be observed only
if the two path lengths along each arm are within the coherent length of the light source.
Therefore, different reference arm positions correspond to measurements at different depths
(i.e. different tissue layers). This ToF information gives spatial information about the tissue
at each layer. By scanning laterally across the entire tissue sample, it is possible to obtain
ToF information for all spatial locations in the tissue. The ToF information obtained from
the fringe patterns can then be used for 3D reconstruction Popescu et al. (2011).

For objects that are opaque at optical frequencies, imaging can be performed with radiation
in the terahertz frequency range in real-time Lee and Hu (2005). Moreover, imaging small
scenes at very high spatial resolutions can be achieved using a method closely related
to OCT, which decomposes light transport based on properties such as path length or
wavelength Gkioulekas et al. (2015).

5.7.2 Digital Holography
A distinct example which uses the same concept as ToF is digital holography. In this
imaging method, a coherent light source is split along two paths, namely the reference
beam and object beam. The object beam is reflected by the object of interest, and the light
reflected and diffracted off the object will interfere with the reference beam at an electronic
sensor array Schnars et al. (2015). In this case, the depth is not directly encoded in the
difference in arrival time, but rather in the difference in phase of the two beams. The phase
difference is introduced by the differing optical path lengths, which therefore enable the
encoding of ToF information. The sensor receives interferograms in the form of intensity
measurements. Reconstructing the 3D object leads to a phase retrieval problem that can
be addressed with analytical approaches Waller et al. (2010) or machine learning Rivenson
et al. (2018); Peng et al. (2020).

5.7.3 Time-Stretched Optics
Thus far in the chapter, we have discussed ultrafast computational imaging methods which
require specialized techniques to extract meaning from high-speed events. However, it is
also possible to slow down a high speed event to a lower speed so it can be detected. For
example, we often seek to obtain spectral images of ultrafast events in real-time, but are
limited by the available detector speed, computing power, and specified form factor. While
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the detector speed may be on the order of 10s of nanoseconds, the event of interest may
be in the picosecond range. It wouldn’t be possible to vary the spectral sensitivity of the
detector in such a short time. Furthermore, spatially offsetting different wavelengths using
diffractive elements would enhance the effects of shot noise, due to a reduced per-pixel light
intensity. The key idea behind photonic time-stretch is that by optically manipulating the
time-scale properties of incident light, it is possible to fully preserve the signal information
without ultrafast detectors such as APDs. The reader is directed to Hau (2011) and Han
and Jalali (2003) for more fundamental discussions on the concept of “slow light” and
time-stretch photonics.

There are four key steps associated with time-stretching. (1) The optical signal is modulated
onto a broadband chirped carrier wave. (2) The signal is stretched in time by use of a
dispersive element (a medium in which the index of refraction, and thus speed of light, vary
as a function of frequency). (3) The signal is measured and digitized at the photodetector
using coherent spectral interferometry. (4) Using digital signal processing and/or machine
learning, the original signal is reconstructed using the temporal encoding of the frequency
information Mahjoubfar et al. (2017). This principle is illustrated in Fig. 5.24a. While
such time-stretching has been highly potent in spectroscopy and microscopy, it is also
particularly consequential for LIDAR. Time-of-flight LIDAR using spectral scanning hasn’t
been feasible due to the lack of available tunable pulsed lasers. However, using a broadband
source, the light can be spatially dispersed by frequency into the scene, and the frequencies
can be optically separated in time. This is schematically shown in Fig. 5.24b. Other
methods to effectively slow down light have used heterodyne Kadambi and Raskar (2017)
and superheterodyne Li et al. interferometry to convert high-frequency modulated signals
to measurable low frequencies for long-range and high-resolution time-of-flight imaging.

The Phase Stretch Transform (PST) is inspired by the physics of time stretching, and is based
on the idea that phase primarily captures the information content in an image, more so than
magnitude does. PST takes a 2D image and simulates it as propagating along an engineered
diffractive medium. As the image is propagated along the medium, the different spatial
frequencies of the image will propagate at different velocities. This effectively "stretches”
the phase between different frequency components over the propagation distance. This
results in a phase profile that reveals edges when applied with morphological and threshold
operators, since edges are characterized by a high spatial frequency Asghari and Jalali
(2015).

Chapter Appendix: Notations
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Notation Description

m (x, y, t) Measurements at spatial coordinates (x, y) at time t

p (t) Probing function

δ (t) Dirac delta distribution

h (t , t′) Scene response function (SRF)

hSI (t − t′) Shift-invariant SRF

di Distance from ith to the sensor

ti Time-delay due to the object at distance di
Γi Reflectivity of the object at distance di
hK (t , t′) SRF accounting K light paths

hDepth (t , t′) SRF due to depth in Fluorescence Lifetime Imaging (FLI)

hDecay (t , t′) SRF due to decay in FLI

µ Emission strength of the FLI sample

λ Lifetime of the FLI sample

hTr (t , t′) SRF in transient imaging

hD (t − t′) SRF due to direct reflection

hI (t − t′) SRF due to inter-reflections

hS (t − t′) SRF due to subsurface scattering

r (t) Reflected function

Ψ (t , t′) Instrument response function

m (t) Continuous-time measurements

y [n] Discrete-time measurements

S Sampling operator

T Sampling interval

⊗ Cross-correlation operation

f Frequency

ω Angular frequency

θω Frequency dependent phase

p Time-reversed version of the probing function p

φ Auto-correlation of the probing function p

T Toeplitz / Convolution matrix

m Measurements vector

s Sparse vector

{sk , λk } Scattering coefficients

bω,φ Final measurements
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Exercises

1. Depth Estimation
Assume we have the typical time-of-flight problem: a number of light pulses p (t) are
projected towards a scene and we need to measure the depth from the measurements of
their reflections y [k] = m (kT). Let’s assume that the pixel grayscale intensities of an
image I represent the depth values. Feel free to capture your own photo, or use the one
in Fig. 5.1.

a) Time-Domain Depth Estimation
Let’s define a set of probing functions given by

pkl (t) = e−t
2
, k = 1, . . . ,K, l = 1, . . . , L,

where K, L denote the dimensions of image I. Let’s assume we have a time-of-
flight setting where a scene is probed with functions pkl (t) which leads to reflection
functions

rkl (t) = 2e−(t−I (k ,l))
2
, k = 1, . . . ,K, l = 1, . . . , L,

where I (k, l) denotes the grayscale intensity of pixel (k, l) in the image.

We assume a lock-in sensor architecture that produces continuous measurements

mkl (t) = (rkl ⊗ pkl) (t) =
∫
R

rkl (t) pkl(t − τ)dτ.

Let ykl [n] = mkl(nT) denote the sampled measurements. Using an appropriate
sampling time T , recover the depth values in the time-domain by implementing

Ĩ (k, l) = Targmax
n

(ykl [n]) .

The depth recovery error is a matrix defined as

Ierror (k, l) = I (k, l) − Ĩ (k, l) .

Plot the error below, similar to the example in Fig. 5.2.

Now we can think of a real life situation where the samples are noisy and therefore
the reflected measurements are corrupted by Gaussian white noise

rkl (t) = 2e−(t−I (k ,l))
2
+ n (t) , k = 1, . . . ,K, l = 1, . . . , L,

where n (t) is sampled from the normal distribution with mean 0 and standard devia-
tion σ.
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Plot the and Ĩ (k, l) and Ierror (k, l) images for σ = 0.4. Given that the depth values of
the image should be between 0 − 255, the result should be similar to the one in Fig.
5.3.

b) Frequency-Domain Depth Estimation
As we have seen in class, in this case, the probing function is

pkl (t) = 1 + p0 cos (ωt) , p0 < 1, k = 1, . . . ,K, l = 1, . . . , L,

and therefore the reflected function is

rkl (t) = Γ0pkl (t − tkl) , k = 1, . . . ,K, l = 1, . . . , L,

Prove analytically that, for a lock-in sensor, the measurement function satisfies

mkl (t) = Γ0

(
1 +

p2
0

2
cos(ωt + ωtkl)

)
.

Let us now use the "Four Bucket Method" presented in class to recover the depth
values for tkl = I (k, l), using the same image as before. Let mn (k, l) = mkl(n π

2ω ),n =
0, . . . ,3. Show that,



m0 (k, l)
m1 (k, l)
m2 (k, l)
m3 (k, l)



=
Γ0
2



2 + p2
0 cos (ωI (k, l))

2 − p2
0 sin (ωI (k, l))

2 − p2
0 cos (ωI (k, l))

2 + p2
0 sin (ωI (k, l))



.

Let us now define the complex number

zω (k, l) = (m0 − m2) +  (m3 − m1) , k = 1, . . . ,K, l = 1, . . . , L.

Prove that the depth values can be recovered as

Ĩ (k, l) = ∠zω (k, l)
ω

.

Compute the depth values and plot the error function Ierror (k, l) = I (k, l) − Ĩ (k, l).

c) Depth Estimation using Fourier Series
Our probing function is not bandlimited, but it can be approximated arbitrarily closely
with a bandlimited function

pkl (t) ≈ p̃kl (t) =
K∑

m=−K
p̂(m)
kl

e mω0t .
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Plot the probing function together with its Fourier series approximation using K =
2,5,10.

Write an analytical derivation showing that the depth can be estimated using the
Fourier series approximation as

I (k, l) = − 1
ω0

∠
m̃kl (t)∑K

m=−K | p̂(m)
kl

|2e mω0t
.

d) Depth Estimation for Multipath Interference
Let’s assume that due to imaging through a transparent object there are several
reflections, which leads to a reflected signal of the form

rkl (t) =
K−1∑
m=1
Γm cos(ωt − ωt(m)

kl
).

Demonstrate that the measurement function takes the form

mkl (t) =
1
2

e ωt ĥ∗kl (ω) ,

where ĥkl (ω) =
∑K−1

m=0 Γme− ωt
(m)
kl , and x∗ denotes the complex conjugate of x. Here,

ĥkl (ω) is the Fourier transform of hkl (t) =
∑K−1

m=0 Γmδ
(
t − t(m)

kl

)
, the scene response

function of the time-of-flight imaging pipeline.

2. Fluorescence Lifetime Imaging with Depth Sensors
Given a fluorescent sample with lifetime parameter λ0, the measurements resulting from
the interaction of a continuous-wave and the samples can be modeled as,

m (t) = δ (t) ∗ ρ0e−
t
λ0 u (t) ,

where m is the measured signal, δ is the Dirac distribution and u is the usual Heaviside
function. In applications such as microscopy, such a sample is placed at a distance d0
from the imaging plane and consequently, the scene response function may be written
as,

hFLI (t) = Γ0δ (t − t0)︸�������︷︷�������︸
Direct Reflection

+ ρ0e−
t−t0
λ0 u (t − t0)︸���������������︷︷���������������︸

Fluorescent Sample

, t0 = 2
d0
c
.

a) Fourier Transform of Scene Response Function
What is the Fourier Transform of the scene response function hFLI (t)?

b) Continuous Wave Measurements
Consider the case of continuous wave time-of-flight imagingwhere the probing signal
is defined by p (t) = 1 + p0 cos (ωt) and a lock-in sensor is employed. Show that the
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measurements read

m (t) =
���̂hFLI (0)

��� +
���̂hFLI (ω)

��� p2
0

2
cos

(
ωt − ∠ĥFLI (ω)

)
,

where ĥFLI (ω) is the Fourier Transform of the SRF derived in the above exercise.

c) Estimation of Lifetimes
We have seen before that for a given pixel co-ordinates (k, l) we can estimate the
Fourier Transform of the scene response function by using the Four Bucket Method.
Said differently, for a modulation frequency ω, let us define measurements,

mk = m
(

kπ
2ω

)
, k = 0, . . . ,3,

then, we have,

zω = (m0 − m2) +  (m3 − m1) = p2
0 ĥ∗FLI (ω) .

Suppose that we are give multiple frequency measurements, yn = znω0/p2
0 and

ωn = nω0, then, we have,

yn =

(
Γ0λ0

1 + ωnλ0

)
e− nω0t0 and yn+1 =

(
Γ0λ0

1 + ωn+1λ0

)
e− nω0t0 e− ω0t0 .

The unknowns in this problem are lifetime λ0 and time-delay t0. Starting with the
ratio,

yn+1
yn
,

show that this forms a linear system of equations in λ0 and e− ω0t0 and can be solved
with any four contiguous values such that � � n < � + 4, � ∈ Z.
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(a)

(b)

Figure 5.18: The Fundamental Difference between Depth Imaging and Lifetime Imaging.
(a) In depth imaging, the phase of the measurements are linearly proportional to the
modulation frequency of the probing signal while in the lifetime imaging case, the phase
is non-linearly dependent on the depth (d) and the lifetime (λ) parameters which arise due
to the modified scene reflection function. (b) Time-of-flight measurements at different
modulation frequencies. (c) Phase image at 40 MHz. (d) Parametric curve fitting of
observed phase for estimation of lifetime.
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Figure 5.19: The Diagram of the NLOS Imaging Setup.
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1/1

Figure 5.20: Reconstruction from NLOS Imaging Measurements. (a) Data collected
for three different laser positions, where the object is a 2 × 2 cm white patch. Three of
the pixels of the streak camera are denoted as p, q, r . (b) The voxels that could have
contributed to pixels p, q and r are determined by the corresponding ellipses p′, q′, r ′.
(c) The heatmap resulted from the backprojection algorithm, computed by superimposing
the elliptical curves corresponding to all pixels. (d) The heatmap resulted from 59 laser
positions. (e) The final heatmap computed after filtering, representing the reconstruction
of the patch.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

Exercises 203

 

Light source 

Correlation 
Camera 

𝑝ఠሺ𝑡ሻ 

𝑓ఠ൫𝑡 െ 𝜙/𝜔൯ 

𝑏ఠ,థ 
𝑟ሺ𝑡ሻ ൌ න 𝑝ఠሺ𝑡′ሻℎሺ𝑡, 𝑡ᇱሻ𝑑𝑡′்

  

Target material 

Figure 5.21: Material classification setup using time-of-flight.

Figure 5.22: The Imaging Prototype used in Heide et al. (2014c). The cameras are imaging
through a tank field with scattering medium placed frontally. An array of laser diodes and
imaging sensor (left), arrangement diagram (center) and experiment setup (right). Reprinted
from Heide et al. (2014c).
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Figure 5.23: Depth Estimation in a Scattering Medium. A tank filled with water (top)
and then with a gradual increase in milk volume up to 300ml (bottom). Imaging with a
conventional camera (left) and with ToF correlation image sensors (right). Reprinted from
Heide et al. (2014c).
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(a)

(b)

Figure 5.24: (a) Photonic Time-Stretch Principle. (b) Imaging Setup for Time-Stretch
LIDAR Jiang et al. (2020)

.
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(a) Grayscale Image of Jupiter.

(b) Grayscale Intensities Converted to
Depth Values.

Figure 5.1: Producing Depth Values from a Grayscale Image.
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(a) Depth Recovery Error Image.
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(b) Depth Recovery Error as a Function of
the Sampling Time T.

Figure 5.2: Example of Depth Recovery Errors.

(a) Depth Recovery Error Image. (b) Depth Recovery Error as a Function of
the Sampling Time T.

Figure 5.3: Example of Depth Recovery Errors for Noisy Measurements.
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6 Light Field Imaging and Display

Capturing 2D pictures has been themain interest since the beginnings of imaging. However,
most animals, including humans, possess stereoscopic vision, which gives them a 3D-like
perspective of reality. Light field imaging goes one step further, seen as a generalization of
3D stereo vision to the new realm of capturing 4D photographs. In this chapter we present
the principle of light fields, their numerous applications, and some of the devices used to
capture them.

To grasp the basic idea of light fields, one must note that an ordinary, in-focus photograph
adds up all the light rays that emit from a spatial location, regardless of their angle. In
contrast, light fields enable us to capture brightness representations in both space and
angle. Thus, the light field is characterized by all the light rays passing through space in all
directions. The 4-dimensional parametrization of light fields enables unique identification
of rays - in contrast to the 2-dimensional parametrization of ordinary photographs.

To simplify the representation in 4 dimensions, we will create an analogy of the light field
in 2 dimensions, also known as the Flatland analogy. This creates a projection of the 4D
light field onto a hypothetical 2D plane, as depicted in Fig. 6.1, essentially dividing the
dimensions in half. Most of the properties of the light field hold in the Flatland analogy.
In Flatland, a light field camera is 2D and an ordinary photograph is 1D.

We know from geometry that a line in a plane can be characterized either by its coordinates
at two points in the plane, or by one point and an angle with one of the axes. The same
principle is applied to parametrize the light field in Flatland. The light rays in Flatland can
be parameterized using their intersections with two parallel lines, also known as the light
slab parametrization. Alternatively, we can use the point of intersection with one line and
the angle between the ray and the line, which is called the spatio-angular parametrization
(see Fig. 6.1).

In Section 6.1 we will discuss one of the first approaches for measuring the light field in
the early 20th century, the Lippmann light field camera. Next, Section 6.2 presents the
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Figure 6.1: The 4D Light Field and Two Projections in Flatland. The 4D light field is
quantified using the two-plane parameterization (left), and subsequently projected in Flat-
land to yield the light slab parametrization (center) and the spatio-angular parametrization
(right).

theoretical apparatus for modeling and processing light fields, and Section 6.3 introduces
some of the common setups for light field capture. Finally, Section 6.4 gives an overview
of the major steps in the development of the light field displays.

6.1 Historical Highlight: The Lippmann Light Field Camera (1908)

The first attempt at capturing the light field was made by Gabriel Lippmann. In his research,
Lippmann was inspired by the insect compound eye. He created an array of small cameras
using a plastic sheet with spherical segments inserted. The array was placed in an opaque
chamber. When exposed to light, each tiny camera captured a different perspective of the
scene. The principle of capturing several perspectives at once also applies to the compound
eye, which is common in the animal kingdom, in particular for insects. The diagram of
the compound eye and of the camera proposed by Lippmann in his original 1908 paper is
depicted in Fig. 6.2.

He designed the camera so that, when illuminated from behind, it would project back the
recorded different perspectives so that a viewer would have the illusion of a 3D image.
His attempts were not fully successful because he could not find materials with the right
properties.
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Figure 6.2: Diagram of the Composite Eye (left) and the Light Field Camera Proposed by
Lippmann (right). Reprinted from Carpenter (1856) and Lippmann (1908).

6.2 Light Field Processing

The light rays surrounding us carry an abundance of information about the 3D environment,
and only a fraction is captured using traditional photography. As discussed before, the
pioneering work of Lipmann on lenslet arrays was experimental in nature, and stagnated
due to the lack of imaging hardware and materials to achieve his desired performance.
Further on, theoretical models of the propagation of light rays started to emerge in the work
of Gershun (1939) and later in Adelson et al. (1991), which introduced the concept of light
field. The light field is described by the totality of all light rays passing through every point
in a scene, along every possible direction. This gives a more comprehensive description of
a scene than traditional photographs, which represent only a slice of the light field. Light
fields therefore allow extracting more information from a scene, either at macroscopic or
microscopic scales.

Light fields allow a multitude of fascinating capabilities. Even without access to a 3D
model of the scene or knowledge of its texture, a light field can be used to compute novel
views, which could for example produce videos where the camera moves freely through
the static scene. The scene lighting can be adjusted, photographs can be refocused post
capture, and the depth of the scene points can be computed, which can be used to generate
3D models of the scene. To understand the principles behind these processing capabilities,
we will first introduce the theoretical formulation of a light field.
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Figure 6.3: The Plenoptic Function in Flatland and 3D. The figure illustrates how the 5
variable plenoptic function (right), or equivalently the 3 variable function in Flatland (left),
is constant along light rays intersecting the origin. This means that the variables are not
independent, and therefore the plenoptic function can be expressed as only a function of 4
variables, or 2 variables in Flatland.

6.2.1 Light Field Formulation
A very detailed model of the light field is given by the plenoptic function, which describes
the light ray as a function of position, angle, wavelength and time. The corresponding
data would have 7 dimensions, which is a significant challenge to acquisition. Therefore, a
commercial light field capture device captures a maximum of 5 dimensions, 3 for position
and 2 for angle, thus assuming the light to be monochromatic and time-invariant. The
plenoptic function in this case is L (x, y, z, θ1, θ2). In a simplified Flatland scenario, the
plenoptic function under the light slab parametrization is L (x, y, θ). The plenoptic func-
tions, displayed in Fig. 6.3 for a given light ray, show how the dimension can be reduced
by one in both cases to describe the light field.

This extended the applications from image-based rendering to amuch larger range, including
3D reconstruction, segmentation, object recognition, etc.. Big challenges remain for light
field capture devices, such as the trade-off between dimensional resolution. Even so, the
data sizes involved impose limits on the processing algorithms.

Levoy and Hanrahan (1996) and Gortler et al. (1996) observed that one more dimension
of the plenoptic function can be reduced, for the following reason. A given light ray is
captured by the plenoptic function for any 3D position located on that ray. This principle
is depicted in Fig. 6.3. Therefore, the light field can be described by a function with only 4
coordinates L (u, v, s, t), where u, v and s, t denote the intersection coordinates between the
measured light ray and two predefined planes Wu et al. (2017).
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The plenoptic function L (u, v, s, t) describes the radiance of light, and is measured in
W · m−2 · sr−1, i.e., amount of Watts per square meter per steradian, where the steradian is
a measure of a solid angle, defining a field of view for the incident light.

Any light ray is uniquely described by two points on the two predefined planes, by defining
coordinates u, v and s, t. This light field description can be interpreted as a series of
cameras located in points s, t called angular dimensions, capturing rays coming from all
points u, v called spatial dimensions. The slice determined by the rays detected with one
of the cameras, denoted Is∗ ,t∗ (u, v) is known as a sub-aperture image. Conversely, the
slice selecting the rays captured by each of the cameras coming from a fixed point, denoted
Iu∗ ,v∗ (s, t) is known as a light field subview. The functions above are computed for two
fixed spatial dimensions or angular dimensions. However, it is also possible to make an
angular and spatial dimension constant, resulting in epipolar planes (EPIs). The two EPIs
are Ev∗ ,t∗ (u, s) and Eu∗ ,s∗ (v, t). They are commonly used in fields such as multi view
computer vision Bolles et al. (1987).

An image is formed on the s, t plane by integrating the radiance L (u, v, s, t). The image,
characterised by its irradiance I (s, t) satisfies

I (s, t) =
∫
Ω

∫
Ω

L (u, v, s, t) du dv.

In the equation above,Ω represents a subset of all angles u, v for which the light rays reach
the point s, t, defined by the aperture of the camera. The irradiance is measured in W · m−2.

In the next subsections we will go through some of the most important applications of light
field processing.

6.2.2 Refocusing
The plenoptic function formulation of the light field can be used to generate new images
focused on different points in the scene. To illustrate this, consider the simplified two-
dimensional scenario, where the s, t and u, v planes become the s line and v line, located
one unit apart, as in Fig. 6.4. When the light is focused on the s line, the image is computed,
as before, with I (s0) =

∫
Ω

L (v, s0) dv. The light focused on a line located at distance d
no longer crosses the s line at a fixed point, but at a variable point s0 + dv, as shown in
Fig. 6.4. Therefore, the new refocused image Id (s0) is computed as

Id (s0) =
∫
Ω

L (v, s0 + dv) dv.

The irradiance is, mathematically speaking, a projection applied to the light field. To better
understand how this transforms the light field, this can be interpreted in the Fourier domain
using the Projection Slice Theorem. This theorem states that the one-dimensional Fourier
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Figure 6.4: Refocusing via Light Field Processing. Image focused on the s line (up) and
refocusing on a new line located at distance d (down).

transform of Id (s) is equal to a slice of the two-dimensional Fourier transform of L (v, s).
In mathematical terms, this can be expressed as

Îd ( fs) = L̂ ( fs fv − dfs) .

In the equation above, Îd and L̂ denote the Fourier transforms, and fs , fv are the variables
in the Fourier domain. In other words, this gives us an additional way of computing a
refocused image, by taking a slice of the Fourier transform of the light field. The principle
behind the Projection Slice Theorem is depicted in Fig. 6.5.

6.2.3 Generating Novel Views
After refocusing, the processed image has the same viewing perspective as the input image.
However, the light field can be rendered to generate new views that were never captured by
any of the physical cameras. These views correspond to theoretical devices called virtual
cameras, that will be introduced as follows.

The plenoptic function variable pairs u, v and s, t are typically defined as coordinates in the
two-plane representation of the light field. However, they can in some applications also be
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Figure 6.5: The Projection Slice Theorem Applied for Image Refocusing.

coordinates on spheres Wu et al. (2017). These virtual views are generated by selecting the
light rays passing through the new point of interest. A diagram of this process is depicted
in Fig. 6.6a, where the blue dot represents the view of a virtual camera rendered using
the light rays captured by the cameras located in the red dots. However, in practice, it is
impossible to capture all the rays incident to one camera, and therefore the light field needs
to be sampled at discrete locations. Therefore, a new ray is approximated by interpolating
the 16 closest rays, determined by any two blue dots located on different planes, as depicted
in Fig. 6.6b. An example of novel views generated with a camera array in Levoy (2006) are
depicted in Fig. 6.7.

An important parameter for generating novel views is the number of acquired samples. If
the number of samples is low, the novel interpolated views will be subject to distortion due
to the ghosting effects. Too many samples, on the other hand, can lead to bandwidth and
storage problems when transmitting the data. Due to the very large data size, the rendered
light field was compressed using well performing algorithms leading to compression rates
of over 100 : 1 Levoy and Hanrahan (1996). It was shown that ghosting can be prevented
if the neighboring views are closer than one pixel Chai et al. (2000); Lin and Shum (2004).
However, when the geometry of the scene is known the number of samples can be reduced
significantly.
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Figure 6.6: Rendering New Views from the Light Field. (a) The blue dot represents the
new view, computed using rays captured by the cameras in the red dots, (b) A ray that is
not captured by any camera (red ray) can be estimated by interpolation using the 16 closest
rays. Reprinted from Wu et al. (2017).

Figure 6.7: Generating Novel Views with a Camera Array. The view from one camera
(left) and the synthetic aperture photograph generated with the views of the whole array
(right). Reprinted from Levoy (2006).
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Figure 6.8: Sampling an EPI Function in the Fourier Domain. (a) EPI function consisting
of a single line. (b) The Fourier spectrum of the continuous EPI function. (c) The Fourier
spectrum of the sampled EPI function, processed with a rectangular filter (blue). (d)
Spectrum processed with a shear filter. Reprinted from Wu et al. (2017).

Sampling the light field can be translated into several sub-problems of sampling the EPI
functions describing it. Let us recall that the EPI functions Ev∗ ,t∗ (u, s) and Eu∗ ,s∗ (v, t) are
derived from the plenoptic functionwhere one spatial dimension and one angular dimension
are kept constant.

To better extract insight into ghosting effects, let us transition the sampling problem to the
Fourier domain. Let us take the example of the EPI function Ev∗ ,t∗ (u, s) consisting of a
single sloped line, as in Fig. 6.8a. When this function is sampled in the spatial domain,
this is equivalent to copying the spectrum of the original function, shown in Fig. 6.8b,
along the two frequency coordinates. The resulting periodic spectrum is then filtered to
recover the original function, just as for one dimensional signals. Using a rectangular filter,
as in Fig. 6.8c, leads to aliasing, and hence ghosting effects. That is because parts of the
shifted copies of the original spectrum are added up to the correct frequencies causing
distortion. This is prevented in this case using shear reconstruction filters, such as in
Fig. 6.8d, which do not cause any frequency interference with adjacent copies and leads to
good reconstructions.
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6.2.4 Depth Estimation
An important application of light field imaging is depth estimation. In order to estimate
depth with an artificial camera, it is important to understand how depth is perceived by
biological organisms. For example, the human visual system perceives scene depth based
on the disparity between the perspective of each eye. This disparity leads to horizontal
parallax, which represents the different appearance of objects when viewed from the two
perspectives. Essentially, the human eyes sample a portion of the light field to compute the
depth.

By detecting the parallax as biological organisms, one can measure depth using several
cameras offering distinct viewing perspectives. Unlike the human vision, the artificial
camera setups offer an extra degree of generality, by including both horizontal and vertical
parallax with the cameras placed in the corresponding positions relative to each other. In
this way, depth can be estimated from one single exposure Adelson and Wang (1992).

There are situations when the parallax is not enough for a good estimation, in which case
different cues can be used for additional accuracy. For example, when an object is located
in front of a wall or screen, the position of its shadow can be used to work out the distance
between the object and the screen. Taking shadow into account leads to significantly
improved depth estimations Tao et al. (2015). However, we wouldn’t be able to use this
method when the objects in the scene have textures that generate specular reflections. A
specular reflection has a unique direction relative to the surface, and is commonwith objects
having a glossy or polished texture. To use the shadows in the estimation, the scene objects
need to be Lambertian, meaning that the light is diffused uniformly by the scene when
illuminated, which is not always valid in real situations.

A possible scenario may involve occluding objects between the camera and the scene. If
we try to use any of the algorithms above in this case, the results would be inaccurate.
However, it is possible to identify the occluders and include them in the depth estimation
process. This leads to a significant improvement in depth estimation, as shown in Wang
et al. (2016).

This leaves us with the problem of identifying the occluding objects correctly. A simple
approach to this maps the points of the occluding objects to the pixels in the camera sensor
that they are projected on. If a pixel corresponds to a point in the scene, its color will
change significantly for different views. However, if the pixel maps to an occluding point,
it is likely to have a similar color when viewed from different angles, unless it is obstructed
by an occluding spatial pixel.

It is possible, of course, to infer the depth by using the entire plenoptic function. This can be
done using just static images, as shown in Gortler et al. (1996), which can be interpolated to
compute the Lumigraph, another name for the plenoptic function. When specular surfaces
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Figure 6.9: Overcomplete Dictionary of Light Field Atoms. Light fields can be recovered
in a very noise robust way, mostly as the linear combination of very few light field atoms.

are present in the scene, it is possible to formulate depth estimation as a constrained labeling
problem on EPI 2D images, which also ensures consistent depth maps for all views Wanner
and Goldluecke (2012).

6.2.5 Further Research
A widespread problem in light field photography is that it requires large datasets in order
to reconstruct a high resolution plenoptic function. This was addressed using compressive
sensing techniques in Marwah et al. (2013), which are methods to efficiently acquire and
then reconstruct a signal using a small number of measurements. In Marwah et al. (2013) a
portion of the light field can be recovered from a single coded image, which is possible due
to the interesting observation that a light field can be broken down into a large dictionary
of atoms, called an overcomplete dictionary, which is depicted in Fig. 6.9.

This dictionary is retrieved from a large number of 4D spatio-angular light field patches of
a predefined collection of light fields, also called training light fieldsMarwah et al. (2013).
It is shown that using light field atoms allows recovering the light field with significantly
higher resolution than other single shot methods.

The work in light field rendering has also attracted attention in the machine learning
community. Rather than processing the light field based on known mathematical models,
machine learning extracts the required information from the data in a process known as
“training.” For instance the depth in a scene can be extracted automatically using a neural
network. While traditional machine learning methods would require training on measured
depth values to predict new ones, the work in Srinivasan et al. (2018) can train the network
using images from a single perspective taken with variable camera aperture.
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Figure 6.10: The Multi Layer Perceptron. The connection weights are adjusted on a
training dataset, such that it predicts the desired information from the scene based on given
3D coordinates.

The realistic scenes with complex geometry can be represented with high fidelity using tri-
angle meshes, or voxel grids. A distinct research direction attempts to use neural networks,
also calledmulti layer perceptrons (MLPs) to directly map 3D coordinates to information
about the objects in the scene Park et al. (2019);Mescheder et al. (2019). TheMLPs are part
of a large class of generic machine learning (ML) models, which perform computations
on data without being explicitly programmed to do it. This is done through a process called
training, in which the model parameters are adjusted to best fit the desired data. A diagram
of an MLP is depicted in Fig. 6.10. We elaborate on neural networks and deep learning
from a mathematical standpoint in Sub-Section 3.4.2, as they are regarded an important
aspect of computational imaging.

In order to map the scene with MLPs, it is necessary to have access to 3D geometry from
the scene, which limits their application. The 3D geometry can be estimated directly from
2D images using neural networks as shown in Srinivasan et al. (2017). The authors of this
work also introduced a very large publicly available database with light fields. A different
method called neural volume (NV) predicts a voxel grid representation of a scene inside a
bounded volume, with a clear background that has been pre recorded separately Lombardi
et al. (2019).

Another approach involves using mesh-based representation of scenes using gradient de-
scentWaechter et al. (2014);Wood et al. (2000); Buehler et al. (2001); Debevec et al. (1996).
In machine learning, gradient descent computes the derivative of the cost function, whose
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Cost Function 

ML Parameters 

Figure 6.11: TheOptimization via Gradient Descent. The aim of the algorithm is to find the
minimum value of the error function, plotted in yellow. At each iteration the parameters are
changed in the direction in which the gradient descends fastest. Depending on the starting
point, the algorithm might identify a local minimum instead of the global minimum.

variables are the network weights. Subsequently, each weight is modified with a step along
the direction in which the derivative of the cost function decreases fastest, which also gives
the name of gradient descent. The functioning principle of gradient descent is depicted in
Fig. 6.11.

A common problem in gradient descent is local minima. If the cost function is not convex,
and has many local minima, it is very likely that the gradient descent algorithm would
fall into such a minimum where the gradient is very small. To address this, the networks
are typically initialised with random weights, and several training epochs are performed.
However even in this case, there is no guarantee of fully avoiding local minima. An example
of such a situation is in the case of mesh-based representations, where the gradient descent
fails often because these representations have a lot of local minima.

The work in Mildenhall et al. (2020) trains a deep neural network (DNN) to generate novel
views of a light field. Specifically, they propose a method to train the DNN to generate an
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Figure 6.12: Novel View Synthesis using Neural Radiance Fields. (a) Neural network input
consisting of 5D light field coordinates, (b) Predicted RGB value, (c) Rendered volume
and (d) Rendering loss function between the predicted volume and ground truth. Reprinted
from Mildenhall et al. (2020).

RGB colour corresponding to 5D coordinates of the light field (x, y, z, θ, γ). They call this
a 5D neural radiance field representation.

The first step involves processing the light field coordinates (x, y, z, θ, γ) with 8 fully con-
nected layers into a density map σ and a feature vector with 256 dimensions. The feature
vector is then processed with a second network made up of 4 layers to output an RGB colour
that is view dependent. The work does not optimise only one network, but two at a time: a
network to represent the course features of the scene, also called course network, and also
a fine network for representing the details.

The cost function for training is given by

E =
∑
r

[���Ĉc (r) − C (r)
���

2

2
+

���Ĉf (r) − C (r)
���

2

2

]
,

where C (r) is the true RGB colour for a given light field sample r , and Ĉc (r) and Ĉf (r) are
the predictions with the course and fine networks, respectively. The function approximated
with each of the networks is naturally differentiable, so this makes it ideal for a training
method such as gradient descent. The diagram of the processing pipeline proposed is
depicted in Fig. 6.12.

Deep neural networks can estimate incident illumination on objects in a 3D scene, therefore
revealing content outside the observed field of view Srinivasan et al. (2020).

Another interesting application of light field photography exploits the fact that the depth
extracted from 2D images has typically poor depth resolution. Depth can however be
estimated very precisely with an imaging paradigm entitled Time-of-Flight, which probes
the scene with a stream of photons and measures the delay until they are reflected by the
scene and captured by a camera. The method entitled Depth Field Imaging measures the
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time-of-flight from different perspectives of the scene, enabling estimating the light field
with improved depth accuracy Jayasuriya et al. (2015).

Another application enabled by light fields is deblurring, which addresses the undesired
blur effect, such as the one caused by a 3D camera motion. In this case the deblurred light
field is computed by estimating the camera motion curve Srinivasan et al. (2017).

6.3 Light Field Capture

Thanks to technological advancements and the reduced dimensionality of the plenoptic
function, discussed in the last section, the research on capturing light fields progressed
to the point where nowadays plenoptic cameras are commercially available, and are even
produced in miniature sizes that can be integrated in cell phones. As the field emerged, the
number of applications extended to areas such as microscopy and computer vision.

Even with reduced dimensionality, it is easy to see that the amount of data contained in
light fields greatly exceeds the one in conventional 2D images. Therefore, capturing the
light field requires carefully selected imaging equipment, and also hardware capable of
transmitting and storing the large amounts of data involved.

Just like the visual systems in the animal kingdom, the imaging devices available compute
2D projections of the 4D light field. Despite this restriction, there are several techniques
available to acquire a complete light field, which will be discussed in the following.

1. Using a camera array. In this case, the resolution in the s, t plane is determined by
the number of cameras, and their distribution, and the resolution in the u, v plane is
determined by the number of sensors per camera, which controls the number of angles
of light rays detected by each unit.

2. Capturing more images with one camera. Typically such cameras are mounted
on computer controlled mechanical gantry devices. In this case, the systems require
high-precision control, and cannot capture dynamical scenes accurately. However, the
amount of data transmitted is reduced.

3. Multiplexed imaging. This technique uses a single camera that introduces a trade-off
between the angle and spatial resolutions. For example, in spatial multiplexing, a lenslet
array takes the place of a single lens, as was shown before. This effectively reduces the
angular resolution while increasing the number of perspectives of the scene. This was
also the idea by Lippmann, the pioneer of light field photography.

In the following, we will go through the main techniques and challenges involved in
capturing light fields.
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6.3.1 Camera Arrays
In order to get a better insight into the scene properties, the images should come from
different orientations and coordinates. This would be equivalent to acquiring several
“slices” of the light field, which can allow its reconstruction. This, in turn, leads to
generating additional “slices” that show the scene from new perspectives. It is also possible
to code information received by each camera. For example, Inagaki et al. (2018) use a
learning framework to capture a light field through a coded aperture.

In addition to providing more information, acquiring different images of lower resolution
also proves more cost effective than using a high resolution camera. The same trend can
be seen in other areas, such as computer processors, where using several average CPUs is
more affordable than one single powerful CPU.

In imaging, this was achieved using a single moving camera capturing images of a static
scene. Later, Dayton Taylor updated it to a linear array of still cameras, which created the
illusion of a camera moving through a static scene Taylor (1996), andManex Entertainment
introduced an adjustable trigger delay to simulate a high-speed camera moving around the
scene Wilburn et al. (2005). All of those applications are important steps forward, but
are suffering from the limitation of being tied to a specific camera trajectory that can be
produced by each setup.

A more general approach introduced later is based on an array of cameras which offer much
more flexibility. The project that pioneered camera arrays in 1997 was called Virtualized
Reality, and it aimed to generate new views of the scene by interpolating the captured
videos. However, the downside of using camera arrays is very large datasets that increase the
complexity for transmission, storage and processing. There have been two main prototypes
for this project. First, a videocassette recorder (VCR) enabled very large storage capabilities
at the cost of low camera resolution. Second, an array of higher resolution 49 cameras
was utilised, which was generating a large amount of data and required a PC for every 3
cameras.

The projects mentioned so far required rather expensive equipment. In order to make the
camera arrays more consumer friendly, Yang introduced Distributed Light Field Cameras
(DLFCs), which used an 8× 8 array of webcams Yang et al. (2002). A reconfigurable array
was made that, due to its mobility, boosts the quality of the interpolated view and therefore
generates more realistic images Zhang and Chen (2004). The more accessible price meant
that these arrays could not be synced as well as the more expensive ones, which led to
artifacts in the interpolated views. Moreover, the large amounts of data restricted the size
of the array compatible with these methods. To allow larger arrays, the data transmitted
was decreased either by sending data corresponding to fewer views, or by using JPEG
compression.
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(a) (b)

Figure 6.13: The Camera Array Recording System. (a) Tightly packed configuration. (b)
Widely spaced configuration. Reprinted from Wilburn et al. (2005).

One of the greatest barriers in camera array imaging is given by the large amounts of data
that require high bandwidth cables. This limits the quality of the footage being captured in
terms of number of simultaneously recorded images, the image resolution, and number of
frames per second. Therefore a research direction is focused on developing new and better
compression algorithms that would ease the restrictions on the recorded data. It has been
observed that there is a large amount of redundancy between the images recorded by each
camera Zhu et al. (2003). Therefore, even after the JPEG compression, the data transmitted
by each camera can be greatly reduced with minimal effect on the accuracy.

Instead of transmitting the recorded bits, their system sends shorter sequences of bits
computed using error-correcting codes. A centralised decoder receives these new bit
sequences from each camera and can recover the data with very good performance. In
essence, this shifts the burden of high data bandwidth to a more complex centralised
decoder, which is easier to manage in practice.

It has been possible to use anMPEG2compression for the video streams to allow transferring
the complete camera recordings to PCs, which led to a 17.5 : 1 compression ratio Wilburn
et al. (2005). This was essential for the array utilised, which had 100 video cameras with
640 × 480 resolution. Uncompressed video frames were also stored to verify the system
performance offline.

The precise time synchronization between the cameras in a large array is essential, and
dedicated cables were chosen for the clock signal Wilburn et al. (2005). Using the system
described so far, the authors were able to capture video streams of up to 2.5 minutes
long, limited to 2 GB in size. Their prototype is depicted in Fig. 6.13 for two spatial
configurations.
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(a) (b)

Figure 6.14: Images Captured with a Camera Array. (a) The exposure time is equal for
all cameras. (b) The exposure time is adjusted for each individual camera. Reprinted from
Wilburn et al. (2005).

In order to get a good representation of the light field, some camera characteristics require
calibration, such as geometry and colour. Full metric calibration is typically employed in
a generalised array. If the array is situated on a plane, then a simpler calibration technique
can be performed that estimates the camera positions and achieves better results than full
metric calibration Vaish et al. (2004).

The camera arrays exploit an important physical phenomenon known as the parallax, which
represents the apparent displacement of objects when viewed from different angles. This
can be adjusted with complex camera setups, or can be compensated for in software, which
was also the choice in Wilburn et al. (2005).

Most camera arrays suffer from variation in colour across the array. Minimising colour
variation is essential for the illusion of a single high-speed video camera. An automatic
colour calibration technique was proposed in Joshi et al. (2005), which is based on placing
a colour chart in the field of view of all cameras. This was combined with the geometrical
calibration target. In the camera setting proposed, gains and offsets of the sensor response
are adjusted to match the target response. Here, for each camera, the gain refers to the
increase in sensor response for a given increase in light intensity, and the offset is the sensor
response for each camera given the same constant light intensity.

Moreover, each sensor saturates at the high and low ends of the light intensity, meaning
that the response is no longer a linear function of the incoming light intensity. This is
compensated for by linearising the responses of all cameras Joshi et al. (2005). Another
inconsistency is the falloff, which represents a variation in intensity between the center and
extremities of an image. This is corrected using colour checking cards placed in the field
of view of the cameras. Since the exact colors on these cards are known, they can be used
to quantify the falloff. Then, a global error correction is done by computing transforms
between the color patch values for each camera, and the average patch values for all cameras,
and then applying the transform to the data filmed by the camera.
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(a)
(b)

Figure 6.15: A Collage Computed from Images Generated with a Flexible Camera Array.
(a) The original images and the matching features (b) The collage generated through
rotations, translations and scalings. Reprinted from the presentation slides in Nomura et al.
(2007).

The camera calibration can give more control over the image appearance, which produces
better results than using a single high resolution camera. It has been demonstrated how an
image mosaic, which refers to joining small resolution images into a single high resolution
picture, can benefit greatly from exposure calibrationWilburn et al. (2005). By overlapping
the fields of views of all cameras one can produce a high dynamic range image, where each
camera can increase or dim the brightness in different locations. An example can be seen
in Fig. 6.14, where the features in the bright and dark areas of the image are much more
visible when the exposure is calibrated.

Rather than generate new views of the captured scene, there has been research into comput-
ing image collages, which give a more comprehensive view of the scene. The collages can
be viewed as a form of geometric calibration, where the 2D points in the camera’s image
plane are matched via the features in the scene. An automatic method was created for
rotating, translating and scaling images by applying the scale-invariant feature transform to
match common features between images Nomura et al. (2007). An example of such a col-
lage is given in Fig. 6.15. The authors also introduced a flexible camera array which could
be assembled in new configuration in a matter of minutes to allow new scene perspectives.

6.3.2 Dappled Photography
The capturing methods above are based on spatial multiplexing, meaning that each image
represents a spatial slice of the plenoptic function. A different approach is called Fourier
multiplexing, which encodes slices of the plenoptic function in different frequency bands.
The advantage here is that a single capture includes several dimensions of the plenoptic
function, and therefore it leads to better light transmission Wetzstein et al. (2013).

A popular Fourier multiplexing method, called Dappled Photography is based on a mask
that does not bend light like lenses do, but rather attenuates it in a shadow-like pattern
Veeraraghavan et al. (2007). This allows acquiring a high resolution 2D image, by account-
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ing for the shadow patterns, and also a low resolution 4D image that can be recovered by
Fourier domain decoding.

The functioning principle of dappled photography is based on the modulation theorem,
which is routinely used in telecommunications. Given a signal u (t), the theorem states that
the modulated signal y (t) = u (t) cos (2π f0t) has a Fourier transform given by

F [y] ( ft ) = F [u] ( ft ) ∗ F [cos (2π f0t)] ( ft )

=
1
2
[F [u] ( ft − f0) + F [u] ( ft + f0)] .

In other words, the theorem states that the spectrum of the modulated signal is made up of
copies of the original spectrum shifted at the frequency of the cosine, also known as carrier
function.

In the case of dappled photography, the incoming light field passes through an aperture, is
filtered by a mask, and then recorded by the camera sensor Fig. 6.16. Let L (x, θ) denote
the incoming light field and M (x, θ) denote the mask modulation function. According to
the modulation theorem, the Fourier transform of the light field after the aperture and mask
is given by

L̂M ( fx, fθ ) =
(
L̂ ∗ M̂

)
( fx, fθ ) ,

where L̂ ( fx, fθ ) and M̂ ( fx, fθ ) are the Fourier transforms of the light field and mask
modulation function, respectively.

Due to the chosen parametrization of the light field, the measurements at the sensor, S (x)
do not change with θ, and therefore

Ŝ ( fs) = F [S] ( fs) = L̂M ( fx, fθ )
���
fx= fs , fθ=0

.

Therefore the spectrum of the sensor measurements represents a horizontal slice from the
modulated light field spectrum L̂M ( fx, fθ ).

The position of the mask relative to the sensor is an important parameter. When the mask is
on the θ plane, then the content of M̂ ( fx, fθ ) is only on the fθ axis. When the mask is placed
between the planes θ and x, then M̂ ( fx, fθ ) is zero apart from a line crossing the origin
(Fig. 6.16). Typically, M̂ ( fx, fθ ) is chosen as a train of Dirac pulses on the corresponding
line, which, according to the modulation theorem, leads to copying the light field spectrum
in the center of each Dirac, as depicted in Fig. 6.16.

With no modulation the sensor measurements satisfy Ŝ ( fs) = L̂ ( fs,0), meaning that a
whole dimension of the incoming light field is lost. With a carefully chosen modulation,
the sensor slices from the modulated light field contain information about the slices of the
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Figure 6.16: Dappled Photography in the Fourier Domain. The incoming light field is
parametrized on the aperture plane and sensor plane (top). The illustration of themodulation
theorem when the mask is on the aperture and between the aperture and sensor (bottom).
The chosen parametrization defines the sensor measurements as a horizontal slice from the
modulated light field spectrum.

light field for different fθ , which can then be used to approximate L̂ with much higher
accuracy.
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Figure 6.17: Dappled Photography Setup using Two Camera Designs. The proposed
cameras (up) and the associated masks (down).

The prototypes used for Dappled Photography in Veeraraghavan et al. (2007) are depicted
in Fig. 6.17.

A different way to recover the light field in a single image capture is given by interposing a
phase plate between the lens and the camera sensor Antipa et al. (2016). The phase plate,
also called a Light Shaping Diffuser, consists of a plate of polymer for which the input side
is flat, and the output side is a random Gaussian surface, therefore refracting the light in a
diffusive pattern. The output surface is modeled as random Gaussian noise filtered with a
smoothing kernel.

In this way, the light field is encoded into the phase of the incoming light, which is then
decoded from the sensor data using an algorithm called phase retrieval. The advantage of
such a setup is a much higher light throughput when compared to Dappled Photography
Antipa et al. (2016).

6.3.3 Microscopic Light Field Imaging
Capturingmultiple perspectives attracted a lot of interest not only in the case ofmacroscopic
objects, but also for microscopic ones Levoy (2006); Levoy et al. (2006). This can address
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some of the known drawbacks of microscopic imaging. One of them is that microscopes are
orthographic projection devices, meaning that they only display images from perspectives
directly above the specimen. They also suffer from a limited depth of field, which allows
them to view a thin section of the specimen. The section can be adjusted, but this is time
consuming and assumes a static scene.

The development of light field microscopy started with the early experiments of Gabor, and
was later improved with the development of lasers. However, it was only after the work of
Lippmann, discussed in Section 6.1, that this technique started making use of microlens
arrays. As is the case for macroscopic photography, a typical application of lens arrays in
microscopy is to increase the field of view.

In light field microscopy imaging, the lens array is used to generate several perspectives,
at the cost of a lower spatial resolution. This has two important implications. First, it
means that the perspective of the object can be changed after the image was captured.
Second, it allows generating tomographic images with one capture, as it will be explained
in the following. Unlike macroscopic photography where the objects are mostly opaque,
in microscopy the specimens are more translucent. This allows capturing images with
changing focus, generating 3D slices of the object, also known as focal stacks, which can
subsequently be processed into 3D tomographic images of the specimen. One can imagine
that each slice in a focal stack originally contains the contribution from the out of focus
parts of the specimen. This is addressed with an algorithm known as 3D deconvolution,
which subtracts these contributions using inverse filtering Agard (1984). This can be done
with traditional microscopes also, but with light field microscopy the focal stack can be
computed from one single capture.

The functioning principle of a conventional microscope in comparison with a light field
microscope is depicted in Fig. 6.18. In a conventional microscope, the specimen is illumi-
nated through a condenser lens. The light is then bent by an objective lens, into parallel
rays, that are further bent by a tube lens such as the specimen is in focus on the intermediate
image plane, located inside the microscope. The first microscopes did not have a tube lens,
which was later introduced to allow a variable tube length. A viewer can see the specimen
through an additional ocular lens, which magnifies the view created on the image plane.

The light field microscope relies on the same basic principles as the classical one. The
condenser and objective lens are not changed. However, a lenslet array is placed in the
image plane, and a sensor array replaces the ocular lens. This is a slightly different setup
than the typical camera array. To explain this, we can use the two plane interpretation of
light fields from Section 6.3.1. Cameras are located in all points with coordinates s, t from
one plane, oriented towards all points with coordinates u, v, located on the second plane.
Thus the variables s, t dictate the spatial resolution of the light field and u, v the angular
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Figure 6.18: A Comparative Diagram of the Traditional and Light Field Microscopes.

resolution. Typically, in a camera array, the spatial resolution is given by the number of
pixels, and the angular resolution depends on the number of lenslets. However, the setup
in Fig. 6.18 has the additional objective and tube lenses positioned such that the specimen
is focused on the lenslet array, rather than the sensors. This swaps the role played by each
array, such that the lenslet array dictates the spatial resolution, and the sensor array controls
the angular resolution. This modified setup has the disadvantage of a slightly larger size.
The advantage, however, is given by the objective lens, which is already present in most
microscopes. Making a lens array of similar quality would be complex and costly Levoy
(2006).

As in macroscopic light field photography, in microscopy there is a trade-off between the
angle (or axial) and spatial resolution. The work in Prevedel et al. (2014) accommodates
this by oversampling the data and then eliminating partly the aliasing effect introduced
using an algorithm called 3D deconvolution.
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Figure 6.19: The Image Captured with a Plenoptic Camera. The image consists of small
circular patches, each containing pixels with different perspectives of a point in the scene
[ref].

6.3.4 Further Research and Applications
The level of flexibility given by a plenoptic camera can be observed by analysing an image
generated with such a camera, such as the one in Fig. 6.19. The image contains several
perspectives of each scene point captured, all grouped in small circular pixel patches.

Since each pixel location in a patch corresponds to a viewing perspective, this image can be
used to access a desired view of the scene by picking the same pixel location in all patches
(Fig. 6.20). Similarly, by summing up several pixels in each patch, one can simulate a larger
aperture size. The depth of field can be adjusted by shifting the selected pixels relative to
each other, as depicted in Fig. 6.20.

Fig. 6.21 illustrates a few examples of light field cameras (macroscopic and microscopic)
that were described in this section, and a few example images. Fig. 6.21a depicts a
motorised gantry with a single camera (top), and two frames from the captured light field
(middle, bottom). Fig. 6.21b shows an array of 128 cameras (top), a view from the array
(middle), and a synthetic aperture photograph computed from the light field, setting the
virtual viewpoint behind the foliage (bottom). Fig. 6.21c displays a plenoptic camera (top),
and two images computed by refocusing the light field post-capture (middle, bottom). A
light field microscope is depicted in Fig. 6.21d (top), followed by an embryo mouse lung
viewed from two perspectives using a single snapshot (middle, bottom).

Light field cameras are not yet as prevalent on the market as traditional 2D cameras.
However, as new phones already have multiple cameras, this becomes technologically

http://graphics.cs.cmu.edu/courses/15-463/2018_fall/lectures/lecture11.pdf
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Figure 6.20: Computing 2D Images from the Plenoptic Image. By picking only the pixels
marked with red in each circular patch, one can simulate a desired viewing angle (left),
aperture size (center) or focus depth (right) [ref].

Figure 6.21: Four of the Typical Light Field Cameras and Examples of Photographs Sliced
from each Light Field (a-d). Reprinted from Levoy (2006).

http://graphics.cs.cmu.edu/courses/15-463/2018_fall/lectures/lecture11.pdf
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Figure 6.22: Light Field Sample Interpolation using the Commercially Available Light
L16 Camera. The 13 megapixel images captured with its 16 camera modules (left). Final
52 megapixel image (right). Reprinted from Sahin and Laroia (2017).

(a) (b)

Figure 6.23: Modern Commercial Lightfield Camera. (a) Front. (b) Back. [link].

possible. There are also specialised devices, such as the Light L16 camera, that are already
commercially available. The device has 16 imaging modules with 13 megapixel resolution
and three focal lengths of 28 mm, 70 mm, 150 mm, respectively, which allows zooming
optically, by interpolating the light field, after an image was captured. The 16 cameras
also have three different fields of view of 75°, 35°, and 17°. After processing, the images
captured with the camera can be combined into a single 52 megapixel high dynamic range
image, as depicted in Fig. 6.22.

The multiplexed light field capture principle was used to design a hand-held plenoptic
camera, which can be operated as a traditional camera Ng et al. (2005). Nowadays plenoptic
cameras come in rather compact forms. A modern commercial and industrial camera are
depicted in Fig. 6.23.

https://en.wikipedia.org/wiki/Lytro
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One may wonder, since the concept of a plenoptic camera has existed since 1908, then why
did it take 100 years to produce commercially viable products? An answer is that plenoptic
cameras recordmany images frommany perspectives simultaneously, therefore they require
high resolution to produce good results. Such sensors have been made available in the last
decades. Moreover, recent results showed that a plenoptic camera can be used for a lot
more than just depth detection, which was not common knowledge at the start of the 20th
century. Finally, the optical part consisting of large arrays of small lenslets, could not be
manufactured easily until recently.

A method requiring a single 2D image to capture the light field was proposed in Antipa
et al. (2016). However, multiple images are needed during calibration. The 3D shape of an
object can also be captured via a digital holographic recording, which is based on a sensor
array comparing a reference wave to a wave reflected from the object Schnars et al. (2015).
It was shown that using holography can provide a better spatial resolution for refocusing
than capturing the 4D light field Cossairt et al. (2014). More comprehensive reviews of
light field capture can be found in Levoy (2006); Ng and Others (2006).

6.4 Light Field Displays

In order to exploit the full benefit of a captured light field, it should be displayed in a way
that presents its true potential. The conventional 2D displays can only show 2D images
which, as stated before, represent only one slice of the light field at a time.

The idea of a 3D display spans all the way to the 17th century, when the French painter
Gaspar Antoine de Bois-Clair created a portrait that would show two different people
depending on the viewing angle, using parallax barriers, which represent a series of
occluding bars. When viewed from an angle, the bars occluded a part of the painting that is
designated for the second viewing angle. This concept was further developed by Frederic
Ives in 1903, who created a patent called the parallax stereogram, which enabled viewing
several images using parallax barriers. Later on, in 1908 Gabriel Lippmann proposed the
concept of 3D display using a lenslet array as part of his work called Integral Photography
Masia et al. (2013).

Since then, the concept of parallax barriers was developed and extended to produce im-
proved 3D displays. However, there are several challenges when designing a 3D display,
such as low light throughput, reduced angular resolution, and crosstalk between distinct
views. With the advent of digital computers and liquid crystal displays (LCDs), many of
these problems can be alleviated, as will be discussed later in this section.
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Figure 6.24: Traditional and Multilayer Light Field Displays. (a) A traditional display
based on a slitted barrier, (b) A traditional display using a front layer based on lenses, and
(c) A multilayer display. Reprinted from Wetzstein et al. (2012).

We will first give an introduction on traditional 3D displays and their limitations, which
then motivate their replacement with more complex displays such as multilayer, multiframe
and tensor displays.

6.4.1 Traditional 3D Displays
The more advanced 3D stereoscopic displays show two light field slices each time, one for
each eye. The challenge for a light field display is to present many slices of the light field
at the same time, without the need to wear any viewing equipment.

The traditional light field displays rely on very simple preprocessing. They are based on a
two-layer system: the back layer displays a number of views, or light field slices, and the
front layer acts as a barrier, allowing the viewer to see only one slice at a time, depending
on their position relative to the display. The front layer can be based simply on a slitted
opaque screen, or a more sophisticated layer of lenses. This architecture is called a parallax
barrier display, due to the parallax effect created by the barrier when the observer changes
the viewing perspective. The schematic of these displays is depicted in Fig. 6.24a and
Fig. 6.24b. The barriers can consist of bars, supporting one dimensional parallax, or of
a mask with pinholes placed in a lattice pattern, supporting full parallax (left-right and
up-down).

There are a few drawbacks of these architectures. First, the viewer will only see a fraction
of the emitted light at a time, i.e., the light throughput is very low. Second, the spatial
resolution is limited, as the pixels from different views need to be adjacent. Third, the
field of view is limited, with only a reduced range of visible angles. Fourth, despite using
the front layer to separate light field slices, there is crosstalk happening between views
decreasing the view quality.

Subsequently, the displays have a limited angular resolution. Similarly to sampling signals
in time, if there are not enough angle samples of the light field, the views will be affected by
aliasing. This means that the high frequencies, which are not captured by the samples, lead
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Figure 6.25: Content-Adaptive Light Field Displays. (a) A parallax barrier implemented
with a dual-stacked LCD. The viewer only sees light crossing the front LCD, and (b)
A content-adaptive dual-stacked LCD, displaying several time-multiplexed frames corre-
sponding to the viewing perspective. Reprinted from Wetzstein et al. (2012).

to distortions in the displayed image. Aliasing can be addressed by prefiltering the light
field before sampling. The angular resolution is in direct connection with the maximum
depth of the display. Therefore, the scene depth is regularly adapted to the display depth
with methods called depth retargeting techniques.

6.4.2 Multilayer and Multiframe Displays
The problems of traditional displays, such as parallax barriers and microlens arrays, were
addressed by generating compressed representations of the light fields. Even though they
are not identical replicas of the light field, these representations are decoded by integration
in the human eye, and therefore are perceived as good estimations. The displays generating
such representations are known as compressive displays Banks et al. (2016); Wetzstein
et al. (2012).

Traditional displays suffer from low spatial resolution and low light throughput. To address
these problems, pinhole masks can be replaced by LCD screens. Unlike the masks whose
patterns are static, the LCDs can adapt the pattern dynamically. Therefore, the display
proposed is made up of a read and front LCD, illuminated by backlight, as illustrated in
Fig. 6.25a. From each viewing perspective, an observer can see the pixels from the rear
LCD that are not blocked by the pixels of the front LCD, acting as a parallax barrier. So
far, the setting still suffers from the problems mentioned above, as many of the pixels in the
image on the rear LCD will be blocked.

This can be fixed in the case of LCDs using a well known phenomenon in the human
visual system, called flicker fusion. This phenomenon manifests through the perception
of a rapid sequence of images as their temporal average. Essentially, any sequence with a
faster frequency than 60 Hz is no longer perceived by the eye as separate events but merged
into a continuous one.
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Figure 6.26: The Layered 3D Display. The display design is based on 5 attenuation layers
(left), the scene (center), and the corresponding light field and 5 optimal layers (right).
Reprinted from Wetzstein et al. (2011).

The front LCD uses this phenomenon by displaying high speed content-adaptive patterns,
which allows the observer to see more pixels for every viewing angle, which leads to higher
resolution and brightness, as depicted in Fig. 6.25b. The shifting masks displayed by the
front LCD thus allow the viewer to see an increased resolution for each viewing angle. At
each time, the mask covers a number of pixels displayed by the rear LCD to show only
one viewing angle. However, these pixels are uncovered when the mask shifts to show
additional pixels from the same angle.

The display method based on time-multiplexing presented above is called High Rank 3D
(HR3D)Wetzstein et al. (2012). This name is derived from the mathematical interpretation
of the process proposed. In the simplified scenario of a 2D light field, we can construct a
matrix where the row and column indices represent the points of intersection of a light ray
with each of the two LCDs. It turns out that such a matrix has rank 1, which corresponds
to a poor approximation of the light field. HR3D can achieve a much more accurate
reconstruction where the light field matrix has rank 3.

The next advancement consisted in a 3D display method calledLayered 3D, which involves
stacks of multiple LCDs Wetzstein et al. (2011). In this case, rather than using one layer to
mask an image, a whole stack of LCDs are used to attenuate light generated by a backlight
emitting layer. This approach increases the computational complexity, but alleviates some
of the drawbacks of traditional displays. The functioning principle of such a display is
depicted in Fig. 6.26.

In Layered 3D, the light rays that pass through the whole stack are attenuated cumulatively
by the corresponding pixels in each layer. When designing such a display, the attenuation
of each light ray in each direction should match the light field that is being displayed. The
principle is very similar to that of Computed Tomography (CT) scanning. The body of a
patient is illuminated and a detector measures the accumulated light attenuation through the
patient’s body. Similarly, the LCD stack is illuminated from below, and the pixels attenuate
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each light ray such that, when viewed from different perspectives, the intensity of the light
observed reflects the 3D structure of the object. The Layered 3D display computed for
a real scene is depicted in Fig. 6.26. The display has 5 layers which were optimised to
best approximate the light field. The tomographic light field synthesis in Layered 3D gives
additional display capabilities such as additional depth of field and better images in terms
of brightness and resolution Wetzstein et al. (2011). A new method was proposed based on
adaptive sampling to decrease the computational resources required Heide et al. (2013).

Let L (s, v) be the target light field. Then the Layered 3D display illuminated by backlight
generates an approximation given by

L̃N (s, v) =
N∏
k=1

f (k)
(
s +

dk
dr

v

)
,

where s, v denote the variables of the light field, measured as coordinates on two lines
placed along the backlight emitting layer and the one near it, respectively, f (k) (s) ∈ [0,1]
is the transmittance at point s of layer k, dk is the distance of layer k to the s-axis, and dr
is the distance between the s-axis and v-axis.

Therefore, the Layered 3D display generates an N th order approximation of the light field.

For N = 3, the points {s + v · d1/dr , s + v · d2/dr , s + v · d3/dr } lie on a plane with equation

P = {(d3 − d2) x1 + (d1 − d3) x2 + (d2 − d1) x3; x1, x2, x3 ∈ R}.

Using this observation, it is convenient mathematically to parametrise the estimated light
field in a 3-dimensional space as function L̃ (x1, x2, x3), such that

L̃
(
s + v · d1

dr
, s + v · d2

dr
, s + v · d3

dr

)
= L̃N (s, v) ,

L̃ (x1, x2, x3) = 0, {x1, x2, x3 � P}.

To make the expression more compact, we can use the concept of tensor, which is the
generalisation of a vector.

We define the estimated light field tensor as L, such that [L]x1 ,x2 ,x3 = L̃ (x1, x2, x3). In the
tensor formulation, we assume that x1, x2, x3 ∈ Z are the coordinates of the pixels on each
layer. We also define the tensor T̃ as

T̃ = 1
M

M∑
p=1

f(1)p ◦ · · · ◦ f(N )
p ,

where ◦ denotes the vector outer product, M denotes the total number of frames and[
f(k)p

]
xk
= f (k)p (xk) Wetzstein et al. (2012). Essentially tensor T̃ represents the set of all

possible combinations of N pixel values, taken from N different layers. We can then state
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Figure 6.27: The Tensor Display with Three Layers. The light illuminating the rear LCD
gets attenuated cumulatively by each layer.

that
L̃ =W � T̃,

where � is the elementwise product and W is a binary mask such that [W]x1 ,x2 ,x3 = 1 if
(x1, x2, x3) ∈ P and 0 otherwise.

In other words, the estimated N-dimensional light field is modeled by the successive N
attenuations of any possible N pixels from different layers, which are then limited by W to
only the groups of pixels that have light rays passing through them.

6.4.3 Tensor Displays
Although they are crucial steps for the advancement of 3D displays, the techniques above
cannot display a light field for multiple observers located in a wide viewing zone. The
coupling of time-multiplexed (HR3D) and light attenuating layers (Layered 3D) led to the
introduction of the tensor displayWetzstein et al. (2012). The tensor display exhibits both
multiframe and multilayer capabilities, which reduces artefacts significantly compared to
Layered 3D and HR3D. Due to additional degrees of freedom, tensor displays achieve a
wider field of view and wider depths of field Wetzstein et al. (2012).

In mathematical terms, the tensor display decomposes the light field L (s, v) into a low-rank
approximation

L̃N ,M (s, v) = 1
M

M∑
p=1

N∏
k=1

f (k)p

(
s +

dk
dr

v

)
,
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where f (k)p (x) ∈ [0,1] is the transmittance at point s of layer k during frame p, M denotes
the total number of frames and N is the order of approximation for the light field. The
diagram of a tensor display is depicted in Fig. 6.27. The estimated light field is computed
by solving

{
f (k)p (x)

}
p=1, · · · ,M
k=1, · · · ,N

= arg min
f
(k)
p (x)∈[0,1]

∫
R

∫
R

(
L (s, v) − L̃N ,M (s, v)

)2
ds dv.

In other words, the estimation computes the transmittance values f (k)p (x) ∈ [0,1] that
minimise the error between the original and estimated light fields.

As before, we can represent the light field as a tensor, assuming that the coordinates on
each layer are integer values denoting the pixel coordinate. In the case of tensor displays,
however, the tensor has order N and rank M therefore allowing a much better approximation
of the light field

T̃ = 1
M

M∑
p=1

f(1)p ◦ · · · ◦ f(N )
p .

The estimation of the light field is then written in a more compact form as

T̃ = arg min
T̃

���L − W � T̃
���

2
,

where L is the tensor representation of the true light field and ‖·‖2 is the squared tensor
norm defined for a tensor Q as

‖Q‖2 =
∑
x1∈Z

∑
x2∈Z

∑
x3∈Z

[T]2x1 ,x2 ,x3 .

The search space ismuch larger here than forLayer 3D, because the values of the attenuations
f (k)p (x) depend on the frame number p in addition to layer number k. Therefore the problem
is more complex, but leads to better estimations of the light field.

An additional degree of freedom is given by controlling the direction of the LCD illumina-
tion source, also known as directional backlighting. This allows sweeping through several
light field views sequentially, adding an additional boost to the field of view and depth of
field Wetzstein et al. (2012).

The estimated light field in the case of directional backlighting is given by

L̃N ,M (s, v) = 1
M

M∑
p=1

bp (s, v)
N∏
k=1

f (k)p

(
s +

dk
dr

v

)
,
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where bp (s, v)models the backlight field parameterized by s, v emitted at time frame p.The
tensor formulation is given in this case by

T̃ = 1
M

M∑
p=1

bp ◦ f(1)p ◦ · · · ◦ f(N )
p ,

where bp is the vectorized form of the backlight field. The estimation of T̃ is done as before
to estimate the desired light field. However, in this case, the additional degrees of freedom
given by bp lead to a higher performance.

6.4.4 Open Problems with Light Field Displays
Some techniques have been put in place to address the most common problems with light
field displays. The crosstalk between views, meaning that a viewing angle can be distorted
by adjacent views, has been incorporated in the model to alleviate the negative effect. This
is done by adjusting the luminance of the images displayed so that the final perceived image
is as close to the target one as possible.

Unlike traditional displays, the compressive displays are typically based on a stack of
LCDs and optical elements such as microlens arrays Banks et al. (2016); Wetzstein et al.
(2012). This causes a multiplicative effect on the incident light, which, in general, allows
displaying more viewing angles than additive displays, such as multi-plane or volumetric.

An important problem with multiplicative displays is their limited resolution. That is
because a common approach in designing these displays is to use two LCD panels among
which the frontal one acts as a parallax barrier. When the pixel size of the frontal LCD is
close to the wavelength of the light, this causes diffraction, which leads to a significant blur.

There is evidence that focus cues, such as blur and accommodation, affect both 3D shape
perception and the apparent scale of the scene. Fig. 6.28 depicts the conditions under
which focus cues can be achieved by a two-layer display. Specifically, this can happen if
the viewing zone is smaller than the size of the pupil, allowing two different views to enter
the same pupil.

Even so, when attempting to display 3D data, such as tomography scans, there are different
methods used to view the data. These methods are based on extracting continuous objects
using boundary detection, performing 2D boundary detection on every slice, or using
voxels to represent the data Herman and Udupa (1983). The latter is less complex since it
avoids the preprocessing steps of boundary detection Frieder et al. (1985). 3D displays can
also be designed as holographic displays, which exploit the diffraction phenomenon using
appropriately chosen optical elements Peng et al. (2017).
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Figure 6.28: Viewing Zone Size for Two-Stacked Displays. The display is at a fixed
distance (d = 125 cm) from the viewer, who has an interpupillary distance (IPD) set to
6.4 cm (left). The viewing zone can be computed as a function of the display resolution
and inter-display distance (right). A resolution beyond 600 DPI leads to significant blur.
For a resolution below that, the inter-display distance should be large enough such that two
views entering the same pupil (which means that focus cues can be achieved). Reprinted
from Banks et al. (2016).

Figure 6.29: A 3D Autostereoscopic Light Field Display. Two perspectives of the display,
each given as a pair for stereo vision (left and right). The object shown is photographed by
a stereo camera system (center). Reprinted from Jones et al. (2007).

An example of a light field display is given in Jones et al. (2007). This is an autostereoscopic
display, which means that it adds binocular perception of 3D depth. It additionally consists
of an user tracking mechanism, to adjust the display to the viewer’s height and distance.
The system is compatible with multiple viewers placed around the display at the same time.
An example of an object displayed on this device is depicted in Fig. 6.29.
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Applications such as virtual reality or augmented reality have pushed the advancement of
near-eye displays, which are based on a headset providing two views for each eye. Most
near-eye displays are based on two separate micro displays, or a screen split optically with
two lenses. In 2015, a new near-eye display was proposed based on two LCDs, allowing
each eye to see freely a 4D light field Huang et al. (2015).

Chapter Appendix: Notations

Notation Description

(x, y, z) Spatial position

(θ1, θ2) Angles

L (x, y, z, θ1, θ2) Plenoptic function (that a Light Field device captures)

(s, t) Angular dimensions

(u, v) Spatial dimensions

L (u, v, s, t) Plenoptic function (reparameterized)

Is∗ ,t∗ (u, v) Sub-aperture image

Iu∗ ,v∗ (s, t) Light field subview

{Ev∗ ,t∗ (u, s) , Eu∗ ,s∗ (v, t)}Epipolar planes (EPIs)

I (s, t) Irradiance

Ω Subset of all angles (u, v) for which the the light rays the point (s, t)
Id Refocused image

Îd Fourier transform of refocused image Id
( fs , fv ) Frequency variable corresponding to (s, v)
F [·] Fourier transform operator

M (x, θ) Mask modulation function

S (x) Light field sensor measurements

f (k) (s) Transmittance at point s of layer k

◦ Vector outer product

L Light field tensor

� Elementwise product

W Binary mask

P Set of points in a plane
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Exercises

1. Motivation
At the top-level, this problem set enables you to turn your cell phone into a 4D light field
camera.

In class we learned how "Bokeh" and shallow depth of field is a desirable aesthetic
quality in a photograph. Unfortunately, this effect requires a large aperture, i.e., the
lens is going to be big and bulky! But what if it was possible to turn your cell phone
into a camera with a large aperture? What if we could selectively focus on objects in
post-processing?

The goal of this exercise is to synthesize images with smaller depths of field thus making
it appear to have been taken from an expensive camera with a larger apertureLumsdaine
and Georgiev (2009) Levoy et al. (2004). Figure 6.1a and b show a scene image with
the corresponding synthetic aperture image with lower depth of field.

(a) (b)

Figure 6.1: Turning a Cell Phone into a Light Field Camera. (a) An all-in focus image
taken with a cell phone camera. (b) A light field stack is post-processed to blur out the
background. Notice how the helmet stands out from the background.

2. Experimental Component
We will capture a video by moving the camera in a zig-zag path as shown in Figure 6.2
in front of the static scene. Unless otherwise discussed with the instruction staff, please
use MATLAB for all codes.

Please note:
• The algorithm being implemented does not take camera tilt into account. Avoid tilting
and rotating the camera as much as possible.
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Figure 6.2: A Zig-zag Planar Motion of the Camera in Front of the Static Scene to
Capture a Video.

• The instruction set use a planar zig-zag path for camera motion as in Fig. 6.2. However,
you are allowed to try different paths like circular or polyline.

• The number of frames in the video captured will determine the time required to compute
the output. Make sure the video is not too long.

Solve all problems below for credit.

a) Set Up a Static Scene
Set up a static scene similar to the one shown in Figure 6.1a. Try to have objects at
different depths.

b) Capturing a 4D Light Field
Take a video by waving your camera in front of the scene by following a specific
planar motion. The more you cover the plane, the better will be your results. Ensure
that all objects are in focus in your video. For credit, generate three frames of the
video. These frames differ in their parallax, i.e., an effect where object positions
change in response to view.

c) Acquiring the Data
Write a function to read your video file and convert the video into a sequence of
frames. Since this was captured from a cell phone, each frame image is in RGB color.
Write a script to convert each frame to gray-scale.
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d) Registering the Frames

i. Template and Window
From the first frame of your video, select an object as a template. We will be
registering all other frames of the video with respect to this template. Once a
template has been selected in the first frame, we search for it in the subsequent
frames. The location of the template in a target frame image will give us the
shift (in pixels) of the camera. Since we don’t have to search for the template
in the entire target frame image, we select a window to perform this operation.
Note, however, that selecting a window is optional. This is done just to reduce the
computation time.

ii. Normalized Cross Correlation
Perform a normalized cross correlation of the template with the extracted search
window.

Let A[i, j] be the normalized cross-correlation coefficient. If t[n,m] is our template
image and w[n,m] is our window, then from Lewis (1995) we have:

A[i, j] =
∑T

n,m=1[w(n,m) − wi, j][t(n − i,m − j) − t]
{∑T

n,m=1[w(n,m) − wi, j]2[t(n − i,m − j) − t]2}0.5
, (6.1)

where, t is the mean of the template and wi, j is the mean of the window w[n,m] in
the region under the template. Plot the cross correlation coefficient matrix A[i, j]
for one of the frames.

iii.Retrieving the Pixel Shifts
The location that yields the maximum value of the coefficient A[i, j] is used to
compute the shift Georgeiv and Intwala (2006). The shift in pixels for each frame
can be found by:

[sx, sy] = maxi, j{A[i, j]}. (6.2)

For credit, please generate the plot of sx v/s sy

e) Synthesizing an Image with Synthetic Aperture
Once you have the pixel shifts for each frame, you can synthesize refocused image
by shifting each frame in the opposite direction and then summing up all the frames.
(Note: in the next section, you will need to explain why this operation works. Start
thinking about this now!)
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Suppose the pixel shift vector for Frame Image Ii[n,m] is [sxi , syi ]. Then, the image
output, P[n,m] with synthetic aperture is obtained as:

P[n,m] =
∑
i

Ii[n − sxi ,m − syi ]. (6.3)

f) Repeating the Experiment for Different Templates
Now, we will exploit the fact that we can synthetically focus on different depths. To
do this, select a new object as your template and repeat all the steps to generate an
image that is focused on this new object. Here, we have selected the cup as our new
object. For credit, generate a de-focused image with a different template object in
focus.

3. Assessment

a) Deriving the Blur Kernel Width
The goal is to understand how much blur is synthetically added by using a model of
pinhole cameras. Consider the coordinate diagram shown in Figure 6.3. Here, [X1,
Z1] is a scene point of an object in the template, [X2, Z2] is a scene point of an object
in the background and C(i) for i = 1, . . . , k are positions of the apertures of cameras
at which the scene is captured. The maximum camera translation is ∆ and f is the
focal length of the cameras (all are assumed to be the same).

We will use the shift-and-add method for light field imaging such that X1 is the
point in focus (i.e. as the "template" that we shift and add"). Derive a mathematical
expression for the full-width half maximum (FWHM) of the blur kernel (W) applied
to X2. Credit will be assessed both for technical correctness and the presentation of
the derivation. You should not need figures, but are welcome to include them (Hint:
Our solution to derive W was about a half page. To check your solution, if Z1 = Z2
the width of the blur kernel should be zero).

b) Blur Kernel Shape
Now that you have derived the FWHM of the blur kernel, please write the functional
expression for the blur kernel. For example, is it a Gaussian blur?

c) Blur and Scene Depth
Plot the width of the blur kernel, W , as a function of the difference in depth planes,
|Z2 − Z1 |. Comment on the relationship between these variables.

d) Blur and Focal Length
Plot the width of the blur kernel, W , as a function of the focal length of the camera,
f . Comment on the relationship between these variables.
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Figure 6.3: Example Coordinate System and Notation. In this figure, the dashed plane is
the virtual film plane, placed one focal length above the apertures located at C(1), . . . ,C(k).
This is a common shorthand convention so we do not have to flip the camera images. In
reality, the actual film plane would be one focal length below the aperture location. This
coordinate system is used as a guide - you are welcome to modify as needed.
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7 Polarimetric Imaging

In what follows, we will discuss coding strategies in optical polarization (hereafter, po-
larization). Computational coded imaging using polarization has spawned a variety of
imaging systems with never-before-seen capabilities. Polarization images of synchrotron
radiation around active galactic nuclei provide valuable insight into the physics of super-
massive black holes Chael et al. (2016). Imaging systems have also been inspired by the
vision systems of marine creatures, who use their polarization-based vision to enhance the
contrast of their predators and navigate through the seas Powell et al. (2018). In this chapter
we will discuss systems that can acquire 3D shape with unprecedented quality, analyze the
stress and strain of a material, or enable lost travelers to navigate the seas.

7.1 Principles of Polarization

In this subsection, we define polarization 7.1.1 and then describe how it is leveraged in
the context of coding 7.1.2 and information 7.1.3. The reader is also welcome to study
Andreou and Kalayjian (2002); Walraven (1977); Hecht (2012) for additional introductions
to polarization.

7.1.1 Formal Definition of Polarization
Recall that light is an electromagnetic wave, which means that it has an electric field and
magnetic field component (Fig. 7.1a). Polarization refers to the orientation of the electric
field of light. When describing polarization, by convention, we ignore the magnetic field
orientation. The polarization can therefore be described by the plane in which the E-field
oscillates within. Consider a light wave propagating in the +z direction. The electric field
will be confined in the x − y plane, and have vector components Ex and Ey such that
E (z) = x̂Ex + ŷEy . The relative phase and magnitudes of Ex and Ey as a function of time
determine the polarization state.

Perhaps the simplest example of polarization is linear polarization, as shown in Fig. 7.1b.
The electric field oscillates in a plane, and the orientation of that plane describes the
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Figure 7.1: ElectromagneticWaves and Polarization. Polarization describes the oscillation
of the electric field of an EM wave over time as it propagates through space.

linear polarization state. Another type of polarization is known as circular polarization.
Intuitively, circular polarization occurs when the electric field vector changes its orientation
as the light propagates through space. Please see Fig. 7.1b for an illustration of circular
polarization. In contrast to linear polarization, this type of polarization is described when
two electromagnetic plane waves add together. These two waves are identical except for
a 90 degree difference in phase. The resultant electromagnetic wave has an electric field
whose direction changes along the axis of propagation. We can plot the tip of the E-field
as a circle when viewed axially.
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The third foundational class of polarization is elliptical polarization. This type of po-
larization is merely a generalization of circular polarization where two electromagnetic
plane waves have unequal amplitudes or a phase offset that is not 0 or 180 degrees. If the
polarization is not circular or linear, then it is elliptical. The types of polarization states we
have discussed so far are summarized in Fig. 7.1b.

The polarization can be decomposed into two orthogonal axes with respect to a plane
of incidence (i.e., when striking a material), seen in Fig. 7.1c. The p-polarized axis is
parallel to the plane of incidence, while the s-polarized axis is perpendicular to the plane
of incidence. This nomenclature stems from the German word for parallel, “parallel,” and
the German word for perpendicular, “senkrecht.” It is common even for experts in the field
to confuse the orientations of s-polarization and p-polarization. One helpful mnemonic is
to remember that “p-polarization” is “in-plane.” The s- and p-polarized light can also be
referred to as perpendicular and parallel polarized light, respectively.

We use this decompositionwith respect to the plane of incidence to find a set of transmission
and reflection coefficients known as the Fresnel coefficients. The s-polarized and p-
polarized light behave differently at the interface of two media. In other words, the amount
of light reflected and transmitted at the interface is dependent on the polarization states of
the light. These coefficients are given by

Γ⊥ =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, τ⊥ = 1 + Γ⊥,

Γ‖ =
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

, τ‖ =
(
1 + Γ‖

) cos θi
cos θt

,

where Γ and τ are the reflection and transmission coefficients, corresponding to the pro-
portion of incident light that is reflected and transmitted. η1 and η2 are impedances of the
media, while θi and θt are the incident and transmitted angles of the wave, related together
by Snell’s Law. The incident angle θi at which all parallel polarized light is transmitted
(i.e., Γ‖ = 0, τ‖ = 1) is known as Brewster’s angle.

7.1.2 Coding with Polarization
The polarization state of light can be manipulated using polarizing filters. Suppose we have
light that is initially unpolarized, meaning that it contains a mixture of both s-polarized
and p-polarized light. Perhaps we want to filter out the s-polarization. A polarizing filter
is a special material that can preferentially transmit light of a specific polarization state
through. As shown in Fig. 7.1d, such a filter has a “vertical spacing” that allows p-polarized
waves to pass. However, the s-polarized light cannot fit through the vertical spacing and is
blocked. The resultant transmitted light is only p-polarized.
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Figure 7.2: Vikings used what they referred to as the “sunstone” for navigating through the
seas on cloudy days, when the sun was out of sight. Historians believe that this navigation
was enabled by the polarimetric properties of the stone, believed to be Calcite.

Now, let us consider how circularly polarized light could be obtained. Recall from the
previous subsection that in circularly polarized light, the s- and p-polarization states are of
identical amplitude, but phase shifted by 90 degrees. A device known as a waveplate has a
slightly different refractive index for light at s-polarization versus p-polarization. Therefore,
it is possible to introduce a controllable phase shift to light at different polarization states.
Circular polarization is commonly produced by first linearly polarizing an unpolarized
beam (using a filter as described in Fig. 7.1d) and subsequently passing it through a quarter-
wave plate. A quarter-wave plate introduces a phase shift of 90 degrees between the two
polarization components.

Today, polarizing filters are among the simplest, most reliable, and most inexpensive way
to obtain complex control of light. There are several categories of materials that have a
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Figure 7.3: Wiregrid Polarizer. Light polarized perpendicular to the wires are transmitted.
In other words, the transmission axis of the polarizer is perpendicular to the wires.

polarization-dependent behavior. The first approach is to use a wiregrid polarizer made
of finely spaced parallel wires. Light polarized parallel to the wires will induce charge
movement along the wires, causing energy dissipation. The result is the annihilation of
the electric field component parallel to the wires, transmitting only polarization states
perpendicular to the wires, as shown in Fig. 7.3. A second approach is to use a thin film
coating applied to glass. This thin film is usually a fine layer of metal with anisotropic
properties, fabricated carefully using principles from Fresnel coefficients for selective
reflectance and transmittance. For a reference on polarization-based optical coatings, the
reader is directed to Macleod (2005). Another type of polarizing filter is a piece of crystal
with anisotropic properties. Such crystals can be found in nature and the light-material
interactions fall under the field of crystal optics. For a more detailed reference on crystal
optics, readers are directed to Yariv and Yeh (2006).

We use polarization filters in our everyday life. An ordinary liquid crystal display (LCD)
uses polarization to adjust the brightness of each pixel. At the heart of the LCD is a crystal
that acts as a polarization filter with controllable orientation (e.g., through applied voltage
or other control input). The amount of linearly polarized light that passes through the
crystal is a function of the orientation of the crystal, and therefore a function of the control
input (e.g., applied voltage). This enables the display to have a different brightness at each
pixel. It’s not just 2D televisions that use polarization, but also 3D televisions at the movie
theater. To obtain the sense of 3D, a display needs to transmit slightly different images to
a human’s left eye versus the right eye. A special television emits two different images,
where one image is made up of s-polarized light and the other of p-polarized light. The use
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(a) (b)

Figure 7.4: (a) Working Principles of Liquid Crystal Displays (LCD). (b) How 3D movies
Are Projected.

of 3D glasses with s- and p-polarization filters enables the human visual system to receive
different light. These concepts are shown in Fig. 7.4.

7.1.3 Information in Polarization
We have thus far described the elementary principles of polarization and the modulation of
polarization state. Now, let us consider the information within polarization. Polarization is
a rich source of information. It is perhaps helpful to separate polarimetric information into
two types: “engineered information” and “natural information.”

Engineered information occurs when man-made systems forcibly transmit data across
polarization channels. Fig. 7.4b demonstrates to us a simple example of such information
multiplexing. At the movie theater, we see a display encoding different streams of video
information at different polarization states. Such multiplexing of information across sepa-
rable polarization states is routinely exploited in (fiber)-optical telecommunication systems,
transmitting information by using two waves of separable polarization states. This could be
s and p components, or left circular and right circular beams transmitted through an optical
fiber. For further details, we direct readers to the term “polarization-division multiplexing”
(PDM) and the text by Damask, “Polarization Optics in Telecommunications” Damask
(2004).

Natural information represents the information that the physical world encodes into the
polarization state. For example, sunlight is partially polarized and changes based on the
time of day, bearing and concentration of the atmosphere. Measuring the polarization state
can enable one to estimate their bearing, as the ancient Vikings did in the 7th century.
See Fig. 7.2 for an example of how Vikings used a Calcite crystal for navigation in a
time preceding the magnetic compass. Photographs can use a similar polarization effect
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Figure 7.5: Shape from Polarization Problem. We can determine the surface normal if we
have information about the reflected polarization and the materials index of refraction.

to increase the contrast of clouds in the sky. Deep sea animals like the mantis shrimp
have a polarization sensitive vision system, perhaps to enhance the contrast of their prey
underwater. Now, let’s take a journey above water. On a sunny day, a sailor might be
bothered by the glare off the surface of a placid lake. The glare is a polarized reflection
that can be removed through a polarization filter, revealing the background underneath the
water. The stress and strain of a material can also be imaged through polarization cues.

Although visually appealing, the interaction between polarization and the scene can be
quite complex. Even the seemingly simple reflection of light involves an intricate geometry,
material and polarization. An illustration of this is shown in Fig. 7.5. Here, the object is in
blue and has two properties of interest. First it has a refractive index n and a local geometry,
described by a surface normal −→N . When light strikes the surface at an angle θ wrt. the
surface normal, there is a change in the polarization state. For instance, in the figure, the
incident light has both s and p-polarization, while the reflected light has s-polarization
and the transmitted light has p-polarization (the dots mean that the oscillation is out of
the incident plane and the hashes mean it is within the incident plane. A very famous
problem known as shape from polarization in computer vision uses measurements of the
polarization state of the incident and reflected light to estimate −→N , a proxy for shape.

If polarized light is shined upon a surface, for almost any angle, a “specular” or mirror-
like reflection will be linearly polarized at some angle θ. This angle can be filtered out to
remove glare. A technique known as cross-polarization leverages this principle. As shown
in Fig. 7.6, two crossed filters are used to remove glare. The first filter vertically polarizes
the light and the mirror-like reflection will therefore be vertically polarized. The light
that one is interested in (e.g., from the diffuse reflections), will have a varied polarization
state, this will be discussed in detail in Section 7.5.1. Simply filtering out the mirror-like
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Figure 7.6: Glare removal using cross polarization.

reflection by using a horizontal polarizer will eliminate glare. Cross-polarization generates
compelling results and is used commercially by art photographers.

7.2 Full Stokes Imaging

7.2.1 Parametrization of Polarization
The polarization state of any light wave (polarized or not) can be compactly expressed as a
single vector quantity known as theStokes vector. The Stokes vector contains 4 components
(S0,S1,S2,S3). The vector (S0,S1,S2) describe the linear polarization of the wave, while S3
describes the circular polarization of the wave. Each parameter can be extracted as intensity
measurements (I0, I1, I2, I3) of the light passing through one of four different polarization
filters. I0 is measured by feeding the light through a filter that indiscriminately absorbs
half the energy of all polarization states. I1 is measured by a linear polarization filter at
0°, I2 is measured by a linear polarization filter at 45°, and I3 is measured by a right-hand
circular polarized filter. Each of the four filters attenuates approximately half of the incident
intensity. Without considering the transmittance of the polarization filter for simplicity, the
Stokes parameters are then given by

S0 = 2I0,

S1 = 2I1 − 2I0,

S2 = 2I2 − 2I0,

S3 = 2I3 − 2I0.
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These four Stokes parameters are rather informative in how light will interact with a certain
medium. Suppose light is propagating in medium 1 with electric field Ei (z, t). This light
is then incident on medium 2, and the transmitted electric field is given by Et (z, t). Ei (z, t)
and Et (z, t) have corresponding Stokes vectors Si and St . We can relate these two Stokes
vectors together by what is known as aMueller Matrix. Every optical media has a Mueller
matrix which describes how incident light will be transformed in an optical media, with
respect to its polarization states. Matrix multiplication of the Mueller matrix with Si yields
St , providing a full understanding of how the polarization state is affected between the two
media. The reader is directed to Hecht (2012) for examples of Mueller matrices in different
optical media.

If we know the Stokes vector for every pixel in an image, we are subsequently able to
characterize the geometrical, chemical, and physical properties of scene surfaces. The first
three parameters are often useful for improving visibility in scattering media, while the last
parameter is often used for improving contrast of images. These parameters also enable
understanding of the surface smoothness, shape, size, color, and orientation.

Another useful way to represent light waves is through the Poincaré sphere. If we neglect
S0, we can plot the latter 3 terms of Stokes vector as a point contained within a 3D sphere.
By dividing (S1,S2,S3) by S0, we obtain the normalized Stokes components

(
S′

1,S
′
2,S

′
3
)
,

which we can plot along in 3D cartesian space, centered at the origin.
(
S′

1,S
′
2,S

′
3
)
can be

plotted as (x, y, z), respectively. The +z-axis refers to right circularly polarized light, while
the −z-axis refers to left circularly polarized light. All points along a circle for a given z
value have the same ellipticity, but at a different orientation angle. Therefore, at z = 0, the
polarization is linear.

7.2.2 Measuring Stokes Parameters
Imaging systems typically only capture a subset of the Stokes parameters, depending on the
application. Imagers that do capture the full Stokes vector utilize a combination of sensors,
controlled linear polarizers, retarders, and computing hardware. The most primitive of
setups measures a scene using 4 different polarization filters, with a retarder appended to
the fourth filter to measure circularly polarized light. The problem with these setups is that
they typically require capture of multiple images, which becomes challenging for dynamic
scenes. We will explore some alternative methods to obtain a full Stokes image.

One such way to efficiently obtain the Stokes parameters is by placing amicropolarimeter
array in front of the focal plane. A micropolarimeter array will have a micropolarizer
element at a given orientation in front of each pixel, filtering only light in that polarization
state, as shown in Fig. 7.7. Thus, each pixel senses exactly one polarization state. The
other polarization states for that pixel are interpolated using the intensities from neighbor-
ing pixels, which measure intensities from different polarization states. This process is
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Figure 7.7: Full Stokes Imaging With a Micropolarimer Array Zhao et al. (2010).

analogous to demosaicing the intensity output from a Bayer filter into an RGB image. Such
micropolarimeter arrays are also fabricated using industry standard complementary metal-
oxide semiconductor (CMOS) fabrication processes, making them easy to manufacture on
a single chip.

When designing such an integrated polarization imaging system, there are three key com-
ponents: optical components, polarizing elements, and photodetectors. Fig. 7.7 shows
the image capture schematic for such a setup. Light is first directed from a scene into a
patterned liquid crystal layer, which acts as either a polarization rotator, retarder, or neutral
density filter. A metal-wire-grid polarizer then selectively allows certain polarization states
to pass through to the focal plane array. As we see in Fig. 7.7, the Stokes vector changes
as it passes through each optical element. We can determine the Mueller matrix for each
element, and properly invert the matrices to obtain the original pixel-wise Stokes vector
as it enters the micropolarimeter Zhao et al. (2010). For information on how intensity
measurements with polarization filters are calibrated to yield Stokes parameters, the reader
is directed to Vedel et al. (2011) and Zhang et al. (2013).

When we want to capture the full Stokes vector, we typically need a minimum of 4
measurements. Provided these 4 measurements are not coplanar in the Poincaré sphere,
these measurements are sufficient to fully characterize the polarization of the light. Fig. 7.8
shows a representation of two different ways to capture the Stokes parameters. Fig. 7.8a
depicts measurements consistent with the way we defined the Stokes parameters above.

Whenwe consider the design of themicropolarimeter array above, it is important to consider
the implications of the “demosaicing”, or interpolation, process in which we extract the
Stokes parameters by interpolating neighboring pixel values. The space occupied by the 4
measurements only takes up a quarter of the sphere’s volume. This is problematic, since
the SNR is proportional to the volume occupied by the four points on the Poincaré sphere.



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

7.3 3D Shape Reconstruction 259

Figure 7.8: Poincaré Representation of Polarization. (a) Polarization measurements
consistent with the definition of Stokes parameters vs. (b) A more robust measurement
scheme for determining Stokes parameters with high SNR.

Therefore, measurements at points shown in Fig. 7.8b would yield a better SNR for the
Stokes vector reconstruction. These points form a tetrahedron inside the Poincaré sphere,
and correspond to four elliptical polarizers.

Points that are offset along the S3 axis are measurements made using a combination of a
microretarder and a micropolarizer. The more points inside the Poincaré sphere, the more
volume occupied and the better the SNR is. However, for practical considerations, we are
restricted to fewer measurements Hsu et al. (2014).

7.3 3D Shape Reconstruction

As alluded to before, the polarization state of light often changes as it reflects off of surfaces,
depending on the geometry and index of refraction of the surface. The polarization state
can be measured to determine the surface normal −→N , which is then used as a proxy for
the local shape of the object. Consumer cameras like Microsoft Kinect measure depth
maps of their surroundings, but are heavily impacted by noise. To an extent, this noise
can be computationally reduced, but filtering noise will also filter away detail. This is
where natural information from polarization can come into play. Polarization can also
be particularly useful for analyzing the shape of glossy surfaces, in which the specular
reflection is significant. As we will see in Section 7.5.1, specular reflections have certain
exploitable polarimetric properties Koshikawa (1979).
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Figure 7.9: Azimuthal Model Mismatch in Shape from Polarization Ba et al. (2020).

There is, however, a key issue with relying exclusively on polarization measurements for
shape information, known as azimuthal ambiguity. At some polarizer orientation ϕpol,
the measured intensity, assuming unpolarized light, can be modeled as

I
(
ϕpol

)
=

Imax + Imin
2

+
Imax − Imin

2
cos

(
2
(
ϕpol − φ

) )
,

where φ is the angle of polarization. Both φ and φ + π can satisfy the above equation,
leading to ambiguity that can cause reconstruction errors. Once φ is recovered, the azimuth
angle can be recovered. The uncertainty in measuring the azimuth angle ϕ is related to the
surface reflectance, in what we term azimuthal model mismatch. A measured azimuthal
component can result in two different surface normals, offset by π/2, as shown in Fig. 7.9.
A common assumption is that if the intensity is dominated by diffuse reflections, then
ϕ = φ. If the reflection is dominated by specularity, ϕ = φ − π/2.

Meanwhile, the zenith component θ of the reflection can be calculated from the degree of
polarization ρ using Fresnel Equations, assuming the index of refraction of the material is
known.

ρ =

(
n − 1

n

)2
sin2 θ

2 + 2n2 −
(
n + 1

n

)2
sin2 θ + 4 cos θ

√
n2 − sin2 θ

.

However, the refractive index is often unknown and approximations are often used, a
common one being n = 1.5, resulting in refractive distortion. Up to this point, the
described method of obtaining surface normals falls under the category of shape from
polarization (SfP). A reconstructed surface normal image using SfP cues are shown in
Fig. 7.10c. While the shape does resemble the approximate shape of the cup, we can clearly
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Figure 7.10: Shape Reconstruction Using Polarization Cues Kadambi et al. (2015).

see a distinction from the ground truth. This discrepancy is caused by refractive distortion
and azimuthal ambiguity.

The depth maps are far too noisy, while polarization information still has some shape
ambiguity. However, both these information channels can be fused strategically to yield
high quality surface normals. We will now consider a depth-normal fusion, a method
known as Polarized 3D, to deal with the azimuthal ambiguity Kadambi et al. (2015). We
will denote our depth map as Ndepth ∈ RM×N and our surface normals from polarization
as Npolar ∈ RM×N×3, assuming there are 3 measured polarization images. To deal with
azimuthal ambiguities as shown in Fig. 7.10c, we search for a binary operator A to solve
for the optimization problem

Â = arg min
A

��Ndepth − A
[
Npolar]��2

2 .

The binary operation corresponds to either rotating the azimuth angle by π or not rotating.
Solving such an optimization deals with the azimuthal ambiguity and yields a corrected
normal image Ncorr = Â

[
Npolar] . Since the coarse depth map consists of low-frequency

information, it cannot correct higher frequency ambiguities. To deal with high-frequency
azimuthal ambiguity, the shape inside the high-frequency region is often assumed to be
convex. The output after dealing with azimuthal ambiguity is shown in Fig. 7.10d.

Finally, we must deal with refractive distortion, caused by the earlier n = 1.5 assumption.
While this assumptionworks relativelywell for dielectric surfaces, the zenith angle becomes
noticeably distorted in the presence of non-dielectrics. We selectively make modifications
to regions of the image using Ndepth and Ncorr as criteria. For a given point, if the depth
map and polarization data both have low divergence, then we can use the surface normal
predicted by Ndepth. This suggests that there is no high frequency detail in that region.
However, if one of the maps has high divergence, it suggests that there is fine detail in that
region.
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For a small patch P in the image, we search for a rotation operator R̂P that solves the
following optimization problem

R̂P = arg min
R

P∑
i=1

Mxi ,yi

���θdepthxi ,yi − R
[
θcorrxi ,yi

] ���
2
,

where Mxi ,yi is a binary mask corresponding to the divergence criteria described above,
and θdepthxi ,yi and θcorrxi ,yi

are the zenith angles obtained from Ndepth and Ncorr, respectively. Note
that we work with patches here, since the problem is spatially varying. Applying the R̂P

operator to every patch yields a surface normal corrected for refractive distortion, which
we can use to extract the shape of the object. The 3D shape can be obtained by integrating
the depth maps with the surface normals, as shown in Fig. 7.10d (Kadambi and Raskar
(2017)). Ba et al. (2020) expand on these physics-based polarization models, introducing
a polarization-learning fusion to solve the azimuthal ambiguity, dubbed "Deep SfP".

Structured light, made possible by active illumination, is also another successful way that
has enabled 3D image reconstruction. The temporal and spatial coding of the illumi-
nation source, as discussed in a previous chapter, provide another useful dimension to
approximating the plenoptic function. However, using structured light is still vulnerable
to complex, difficult to model ambient noise. It is useful to consider the fact that light
behaves differently at different surfaces depending on the polarization. However, an active
polarization-based approach would be even more robust, since ambient polarization cues
are often approximated and can be weak.

Many intensity-based structured light systems incorporate Gray code (GC) patterns, in
which the light pattern is encoded as either 0 for dark or 1 for bright. Whether spatially
or temporally coded, the forward image model is inverted, and signals that have a weak
response to the GC intensity modulation are filtered out. Similarly, we can encode the
horizontal polarization state as 1 and vertical polarization state as 0. The use of polar-
ization adds another layer of information to normal intensity-based coding, by providing
information about the surface of the objects. For spatial modulation, we can use a microp-
olarimeter, while for temporal modulation we can use liquid crystal polarizers Huang et al.
(2017).

Another way to extract the shape for objects is by using the Stokes parametrization. Often,
many setups discard the circularly polarized parameter to keep the imaging system cheap
and/or compact. However, for many dielectric materials, there is a non-negligible circular
polarization component that contains valuable surface normal information. One possible
source of this circularly polarized light can be from subsurface scattering. Generally
subsurface scattering is neglected, but accounting for it can improve model accuracy. The
Stokes reflectance field is defined as the Stokes vector that results from the interaction of
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Figure 7.11: Image Formation Model for Passive Polarization Imaging. Reprinted from
Schechner and Karpel (2005).

light with somemedium, for every surface normal direction. The use of a Stokes reflectance
field enables direct mapping from a pixelwise measured Stokes vector to a surface normal.

The complexity of scattering mechanisms at the interface between two different media can
be difficult to precisely model. That is, it is difficult to find a Mueller matrix that fully
captures this behavior. One way to go around this is to experimentally determine the Stokes
parameters for some known surface (e.g., a sphere) under unpolarized light. This data is
then used as a reference for future datameasurements. To account for differences in specular
albedo and scattering, the maximum of

√(
S′

1
)2
+
(
S′

2
)2 and S′

3 is scaled appropriately to
match the maximum of the reference measurement. Note the S′ denotes the Stokes vector
after interacting with the surface. Such first-order correction works well for surfaces with
a wide range of surface normals. The surface normal can be calculated using the degree
of polarization. The improvement occurs because other methods calculate the degree of
polarization by assuming S′

3 = 0 (Guarnera et al. (2012)).

7.4 Imaging Through Scattering Media

Imaging through scattering media like fog, haze, and water are crucial for a number of
commercial and scientific applications, including autonomous driving, marine exploration,
navigation, and photography. Back-scatter quickly degrades the visibility of images located
far away from the camera in such environments. It is also desirable to not have to model
the scattering mechanisms causing these degradations, as they can be complex and highly
dependent on factors like time of day, weather, and location. These scattering mechanisms
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often have a polarization signature, which can be used to filter away these unwanted
components Treibitz and Schechner (2008).

7.4.1 Underwater Imaging
One key challenge with underwater imaging is that the image degradation caused by scat-
tering is spatially varying, since objects are different distances away from the camera. This
makes image processing tools like median filtering and histogram equalization ineffective,
since these algorithms assume spatially invariant noise. One way to deal with this is by
using an image formation model based on polarization images. Fig. 7.11 depicts the passive
imaging model.

In this passively illuminated setup, themeasured signal is a composition of two components:
the direct transmission and the forward scattering. As light propagates along the z-axis
towards the camera, the direct transmission, given by

D (x, y) = Lobject (x, y) e−cz,

is light that will reach the camera without being scattered or absorbed. Lobject is the intensity
that would be measured at the camera if the signal is unattenuated, while c = a + b is the
attenuation coefficient, where a is the absorption coefficient and b is the total scattering
coefficient of the medium (i.e., water). The scattering component is forward scattered light
that deviates from the lights axis of propagation by some angle θ. This causes blur, which
we can model as a convolution

F (x, y) = D (x, y) ∗ gz (x, y) ,

where gz (x, y) is the point spread function (PSF) of the blur. Note that the PSF is z-
dependent, since light will scatter more the farther it has to travel. Therefore, we can model
the total measured signal as

S = D + F = e−cz
(
Lobject + Lobject ∗ gz

)
.

Interestingly, however, image degradation from underwater images are more affected by
veiling light than by image blur. Veiling light is ambient light scattered toward the camera.
It is not light considered to be part of the image-forming process. We use the fact that
veiling light is partially polarized to algorithmically remove this component.

Under ordinary lighting conditions, the veiling light (i.e., the sun) would be unpolarized.
However, as shown in Fig. 7.12, the illumination source is above water, meaning there
exists an “optical manhole,” such that an observer can only see a small portion of the scene
above water, caused by total internal reflection. This means that the angle at which the
source reaches the scattering particles in the line of sight of the camera is restricted. Due
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Figure 7.12: Snell’s Window (Optical Manhole). Total internal reflection past the critical
angle creates only a small window visible from underwater.

to this anisotropy of irradiance, the veiling is partially polarized. The deeper the image is
captured in the water, the more the veiling is polarized.

Using two different polarizers, we can now measure two images at polarizer orientations
corresponding to the minimum and maximum intensity. From these measurements, we
can apply image processing algorithms to recover the veiling light and remove it from the
image Schechner and Karpel (2005). This reconstruction process is similar to that done in
dehazing problems, which we will discuss in Section 7.4.2.

We now consider the integration of stereo vision and polarization imaging for underwater
imaging as shown in Fig. 7.13. Each of the two cameras captures a different polarization
state. The use of stereo cues enables the computation of distance to objects, while the
polarization allows filtering of backscatter. We assume that in the absence of polarizers, the
cameras will capture a linear superposition of the object signal S

(
xobj

)
and the backscatter

B
(
xobj

)
.

I
(
xobj

)
= S

(
xobj

)
+ B

(
xobj

)
.

The measured signal at a point xobj in a scene is given by

S
(
xobj

)
= Lobj

(
xobj

)
Fobj

(
xobj

)
,

where Lobj
(
xobj

)
is the attenuated intensity of xobj and Fobj

(
xobj

)
is the falloff function.

The falloff function is a function of an attenuation constant c, the distance to the object
Rsrc, and inhomogeneities Q

(
xobj

)
in the illumination source. It provides us with insight

into the irradiation attenuation as light propagates from the source to the object, and back
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Figure 7.13: Stereovision and Polarization for Underwater Imaging. The use of stereo
enables video rate capture of polarization images underwater Sarafraz et al. (2009).

to the camera. B
(
xobj

)
is similarly a function of c, θ (as shown in Fig. 7.13), and Q

(
xobj

)
,

but is different from S
(
xobj

)
. Using expressions for S

(
xobj

)
and B

(
xobj

)
, derived with the

geometries of the left and right cameras, we obtain expressions for the input intensities for
each of the cameras (L and R) as

IL
(
xLobj

)
= SL

(
xLobj

)
+ BL

(
xLobj

)
,

IR
(
xRobj

)
= SR

(
xRobj

)
+ BR

(
xRobj

)
.

The use of polarization in this setup also enables backscatter modulation by removing
degeneracy. Since the backscatter is partially polarized, and the object radiance is unpo-
larized, the polarization filters are able to modulate the backscatter, without modulating the
signal Sarafraz et al. (2009). This backscatter removal can be removed by using coordinate
adjustments (needed due to the stereo setup) and image models described in Section 7.4.2.

7.4.2 Imaging Through Haze and Fog
As mentioned earlier, image degradation effects caused by haze are very strongly a function
of the distance to the object being imaged. The further away the object, the more light that
gets scattered along the optical path between the object and the camera. In a hazy image, an
image consists of airlight (natural illumination scattered towards the observer by aerosol
particles) and direct illumination, which is the scene radiance that would be observed in
the absence of haze. To enhance an image in haze, we seek to remove the airlight and
correct for the attenuation caused by absorption and scattering. Similar to the imaging
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Figure 7.14: Image Formation Model For Dehazing. The airlight has certain polarimetric
properties, which are leveraged to be removed from the image.

through water problem, the dehazing problem has an image formation model as shown in
Fig. 7.14.

Let us start by defining the plane of incidence in this case as the plane formed by the vector
from the source to the scattering particle and the vector connecting the particle and the
camera. The airlight is divided into two polarization components parallel and perpendicular
to this plane A‖ and A⊥. In Rayleigh scattering, when the size of the particles is small with
respect to the light, A⊥ � A‖ . When larger haze particles cause the scattering, A⊥ < A‖ .
We therefore can model the airlight as

A = A∞ [1 − t (z)] = A⊥ + A‖,

where A∞ is the airlight radiance for an object infinitely far away, and t (z) is the trans-
mittance of the light a distance z away, defined by Beer-Lambert Law. The degree of
polarization ρ of the airlight is a strong function of the viewing and illumination direction,
and given by

ρ =
(
A⊥ − A‖

)
/A.

Notationally, we define A‖ to be the lowest intensity measured and A⊥ to be the highest
measured intensity with a linear polarizer. If ρ = 1, then the airlight can easily be optically
filtered out. However, this only occurs in the restricted situation where the scattering
aerosols are small and the illumination is normal to the viewing direction. In spite of this,
we can still algorithmically take advantage of the fact that the airlight is partially polarized.
The degree of polarizationmust still be relatively high though, so such an algorithmmay not
be as effective in fog, where multiple scattering will cause depolarization. Depolarization
is the reduction of the degree of polarization.
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Meanwhile, the direct transmission can be modeled as

D = Lobjectt (z) ,

where Lobject is the radiance that would be sensed by the camera if there was no attenuation.
We also assume that D has negligible polarization (i.e., unpolarized). Note that this
assumption does not hold for specular surfaces, but if the object is far enough, the specular
component will still contribute a negligible polarization. This means that the polarization
filters will modulate the airlight more than the direct component, as mentioned earlier.

We know that the image (without polarizers) is a superposition of the direct transmission
and airlight. When we add a polarizer at an orientation α that attenuates the most airlight,
our measured intensity can be modeled as

I‖ = D/2 + A‖ .

Similarly, the polarizer orientation that transmits the most airlight can be modeled as

I⊥ = D/2 + A⊥.

Adepiction of this concept can be seen in Fig. 7.15. We refer to themost and least attenuation
as the “best state” and “worst state” respectively. Fig. 7.15 depicts an example of two images
captured at the best and worst state. Note that these images are not significantly different
in quality. We can estimate A⊥ and A‖ to be

A‖ = A (1 − p) /2,
A⊥ = A (1 + p) /2.

We know from Fig. 7.16 that optical filtering doesn’t suffice for such a scene due to
partial polarization, so we now apply a spatially varying algorithm. Combining the above
equations, we obtain an estimate for the airlight Â

Â =
(
Î⊥ − Î‖

)
/p.

Using this, we obtain an estimate for an image removed of airlight D̂

D̂ = Î⊥ + Î‖ + Â.

Finally, we account for the spatially varying attenuation by approximating the transmission
t̂ as

t̂ = 1 − Â/A∞.
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Figure 7.15: Contributions of Airlight and Direct Transmission Intensities. The polariza-
tion filter modulates the airlight and scattered light, but not the directly transmitted light.
We leverage this fact to remove scatter and enhance the image.

Finally, our dehazed image L̂object is given by

L̂object =
D̂
t
=

Î⊥ + Î‖ − Â

1 − Â/A∞
.

The dehazed image is shown in Fig. 7.16 (Schechner et al. (2003)).

So far, we have considered the case where the airlight is polarized, but not the scene
radiance. This assumption does not always hold. In reality, both the polarizations of the
airlight and the object radiance contribute to the overall polarization of the scene. To
account for both these polarizations, we consider the full Stokes vector at each pixel. For a
partially polarized beam, we can consider its Stokes vector to be a superposition of a Stokes
vector of a polarized beam and a Stokes vector of an unpolarized beam.
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Figure 7.16: Image Dehazing Using Polarization and Physics-Based Models Schechner
et al. (2003).

For the outlined method, we neglect S3 since circular polarization is not prominent in
natural scenes. The degree ρλ and angle φλ of polarization can easily be determined for
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each color channel in λ = {λR, λG, λB} by

ρλ =

√(
Sλ

1
)2
+
(
Sλ

2
)2

Sλ
0

,

φλ =
1
2

arctan

(
Sλ

2

Sλ
1

)
.

To account for both the polarizations of the airlight and the radiance, we modify the
transmission function earlier to instead get

t (x, y) = 1 − ∆I (x, y) − ρD (x, y) S0 (x, y)
A∞ [ρA (x, y) − ρD (x, y)] ,

where ∆I (x, y) = Imax − Imin is the polarization-differenced image Fang et al. (2014).

7.4.3 Polarization-ToF Fusion for Depth Maps
As we saw in 5.2, we can obtain useful information from time-resolved images, particularly
scene depth. Scene depth is often measured based on a time-of-flight principle, where
the time between an emitted pulse and a measured spike can be used to infer distance.
However, in scattered media, this becomes non-trivial because of the mixing between
scattered light from particles and reflected light from surfaces. The non-uniformity of
polarization orientations and degree of polarizations with respect to space and time must
be accounted for. We will build off our mathematical foundation for steady-state imaging
and apply it to adaptive de-scattering imaging in a time-resolved manner.

Once again, we rely on the Stokes formulation to deal with this problem, but only the
linear components. We measure the Stokes components here by measuring intensities three
different polarization orientations α = {α1, α2, α3}. We will obtain measurements for each
orientation

I (t, α) = 1
2
[S0 (t) + S1 (t) cos (2α) + S2 (t) sin (2α)] .

From this, we can compute the degree of polarization for each pixel by

ρ (t) =

√
S2

1 (t) + S2
2 (t)

S0 (t)
.

Note that the measured intensities now are taken as a function of time, since polarization
states can change between frames. Using a Taylor approximation of Beer-Lambert’s Law,
we can extract the direct component as

D = S0 (t)
[
1 − ρ (t)
ρS∞ (t)

]
,
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Figure 7.17: Specular versus Diffuse Reflection.

where ρS∞ = I−1
S∞

(
Imax
S∞

− Imin
S∞

)
. While this term does not account for attenuation, it still

leads to reasonably good depth estimates. To obtain the depth, we consider a camera at
position O, a light source at position S, and a scene point at X . We know that

|SX| + |OX| = cτ (x) ,

where c is the speed of light and τ (x) is the time it takes for the reflection to be detected at
pixel x. We can extract the depth for each pixel as

d (x) = |OS| = |OS|2 − (cτ (x))2

2|OS| cos θ − 2cτ (x)
,

where θ is the angle between OS and OX Wu et al. (2018). For an example on how
polarization can be used to obtain depth via interferometry, the reader is directed to Maeda
et al. (2018).

7.5 Reflectance Decomposition Using Polarimetric Cues

7.5.1 Specular vs. Diffuse Reflection
When light bounces off of a surface, it can either reflect in a specular or diffuse manner.
Specular reflections occur when light bounces in a mirror-like fashion, where the reflected
light is at the same angle as the incident light, as governed by Snell’s Law. Diffuse
reflections, however, go through several layers of interreflections and subsurface scattering
before re-emerging at the surface of the material. The two concepts are illustrated in
Fig. 7.17. The problem with specular reflections is that the reflected light is spatially
concentrated, which produces a strong highlight in brightness. These cause a glaring
effect, which affects both the visual aesthetic of the image and the ability for a machine to
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perform vision tasks like object detection. There is great benefit in being able to separate
an image into its specular and diffuse components.

Non-polarization based methods leverage aspects of the color intensity profile to separate
specular and diffuse components. For dielectrics, the dichromatic reflectance model
predicts that specular reflections have a similar spectral profile as the illumination spectrum,
while the spectrum of diffuse components are affected by the surface medium. Other
approaches invoke a Lambertian constraint, in which the observed intensity of the diffuse
components is isotropic, or close to isotropic. Thismeans that the observed diffuse reflection
varies slowly (if at all) with observer position, unlike specular reflections, which vary
rapidly with position. Intensities violating this Lambertian criteria are detected as specular.
However, the color-dependence of these approaches do not consider the complexity of color
profiles of real-world scenes.

Assuming that a scene primarily consists of dielectric materials, we can assume (1) the
applicability of a dichromatic model and (2) that the specular component is polarized, while
the diffuse is not. We can formulate the intensity I at every pixel as

I = Id + Is,

where Id is the diffuse intensity and Is is the specular intensity. If we place a linear polarizer
in front of the sensor, we know that Id will be approximately constant as a function of the
polarizer orientation, since the diffuse component is unpolarized. However, Is should
vary as a function of the orientation angle θ. Therefore, we can now write the specular
component as

Is = Isc + Isv cos [2 (θ − α)] ,

where α is the orientation of the polarizer, Isc is a constant specular offset, and Isv is the
amplitude of the cosine variation. In a situation where the illumination can be controlled,
this creates a straightforward specular removal process by using linearly polarized incident
light. In such a case, we can take advantage of the fact that smooth surfaces preserve the
polarization states of specularly reflected light. This means that we can place a polarizer
phase shifted by π/2 from the illumination to effectively filter out the specular components
and leave you with a diffuse image.

However, we cannot always control the source illumination, so we also consider specular/d-
iffuse separation under passive illumination, which we assume to be unpolarized. Isc and
Isv are dependent on the complex index of refraction η and the incidence angle ψ.

Isc + Isv
Isc − Isv

=
F⊥ (η,ψ)
F‖ (η,ψ)

= q.
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Figure 7.18: Color Constraints on Specular/Diffuse Decomposition.

We know that for a filter with orientation θi , the measured intensity can be written as

Ii = Ic + Isv cos [2 (θi − α)] ,

where Ic = Id + Isc . We can reformulate this into a linear system of equations for M
different filters by expressing the equation as a dot product.

Ii = 〈fi,v〉,

where fi = [1,cos (2θi) , sin (2θi)] and v = [Ic, Isv cos (2α) , Isv sin (2α)]. For M = 3
independent filters, we can solve the linear equation to obtain v, but there remains an
ambiguity with α, since α can be either α + π or α. We need additional information to
resolve this ambiguity. Note that we could solve for Id by using q, but this is usually not
known a priori.

While we cannot rely solely on color information, it provides a way to constrain our image
decomposition. For a set of collected polarized images, we know that the diffuse component
will not change, but the specular component will vary as a function of cos (θi). This means
that the measurements Ii will lie along a line L in color space, as shown in Fig. 7.18. We
can easily see from the expression for Ii that Imax = Ic + Isv and Imin = Ic − Isv . We can
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then extract the degree of polarization via the analytical equation

ρ =
Imax − Imin
Imax + Imin

.

The degree of polarization gives us a measure of how polarized a light is, with ρ = 0
suggesting the light is unpolarized and ρ = 1 suggesting that the light is completely
polarized along an axis. If ρ is below a certain threshold, we can assume that the light is
unpolarized and mark the entire intensity of that pixel as diffuse. If the pixel is sufficiently
polarized, and the colors of the specular and diffuse components are sufficiently different,
we can take advantage of the dichromatic model. We quantify the similarity of the colors by
the angle β in Fig. 7.18. Using color information from neighboring pixels, we can extract
Id from the measurements Ic Nayar et al. (1997). In this case, we saw how polarization
properties of diffuse and specular components further allow us to constrain color-based
decomposition.

The specular and diffuse components can also be calculated if we can capture the full Stokes
vector under circularly polarized spherical illumination. Recall from earlier that the Stokes
vector of an incoming wave is transformed at the interface of another medium. This change
can be modeled by the linear transformation

s′ = C (φ)D
(
δ;−→N

)
R
(
θ;−→N

)
C (−φ) s,

where s is the original Stokes vector, s′ is the transformed Stokes vector, C is the Mueller
rotation matrix, R is the Mueller reflection matrix, D is the retardation Mueller matrix, θ
is the incidence angle, φ is the angle between the plane of incidence and the x-axis, −→N
is the surface normal, and δ is the phase shift. This formulation holds for pure specular
reflections. Using such a model, we can infer the reflectance behavior of the surface. First,
we compute the degree of polarization using the measured Stokes parameters as

p =

√
s2

1 + s2
2 + s2

3

s0
.

The specular intensity can be extracted as ρs = s0p and the diffuse intensity can be
extracted as ρp = s0 (1 − p), since specular light is polarized and diffuse is not. We can
then couple these values with the measured Stokes parameters to determine the parallel and
perpendicular reflection coefficients, by solving the following equations.

s0 =
1
2
(
R‖ + R⊥

)
+ ρd,

s3 = ±
√

R‖R⊥.

If θ � θB, then we take the positive value of s3, where θB is the Brewster angle. Otherwise,
we take the negative value of s3. Using the reflection coefficients we can determine the
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Figure 7.19: Image Affected by Semireflector Schechner et al. (1999).

per-pixel index of refractions from Fresnel equations, which would greatly improve the
SfP task as discussed earlier, where refractive distortion was problematic. In practice,
this only holds for dielectrics, since metals have a complex index of refraction. However,
approximating them as real values still works relatively well Ghosh et al. (2010). Ghosh
et al. (2011) and Ma et al. (2007) use a multiview capture system with spherical gradient
illumination to capture the geometry and reflectance of a human face, which contains a
diverse mixture of specular and diffuse reflection.

7.5.2 Virtual vs. Real Image Decomposition
When a transparent material is present between a camera and the scene, we visually notice
that a partial reflection will be superimposed on the observed scene. Such semireflections
negatively impact image aesthetic and the performance of vision tasks. We denote this trans-
parentmaterial as the transparent layer, the scene as the real object, and the semi-reflections
as the virtual object, as shown in Fig. 7.19. While the presence of the semireflected image
is unwanted in the image, it may still be desired to keep this image. Therefore, it is of great
value to be able to decompose an image into a virtual and semireflected image.

One way we could deal with this is just by placing a polarization filter in front of the
camera to block the virtual image. However, this filtering is only effective when φ is at the
Brewster angle, in which case we orient the polarizer parallel to the plane of incidence to
filter out reflected perpendicularly polarized light. Furthermore, we may want to still keep
the virtual image as a source of information about the scene. We also want to be able to
identify which image is the virtual image and which is the real image.
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Figure 7.20: Multiple Reflections and Refractions in a Semireflector Schechner et al.
(1999).

Light incident on a semireflector can be separated into parallel and perpendicular compo-
nents (relative to the plane of incidence), I‖ and I⊥. The reflectivities for a single surface
medium are given by the Fresnel coefficients of reflection

R‖ =
tan2 (φ − φ′)
tan2 (φ + φ′) , R⊥ =

sin2 (φ − φ′)
sin2 (φ + φ′)

,

where φ is the angle of incidence (from the virtual scene onto the semireflector) and φ′ is
the angle of the refracted ray (as governed by Snell’s Law). Usually the semireflector, e.g.,
glass of a car window, has a finite thickness. As the light enters the first air-glass interface,
part of it will be transmitted and part of it will be reflected. At the second interface, part
of the light will again be reflected, while part of the light will be refracted into the air, and
the process repeats, as shown in Fig. 7.20. The total reflectivity is thus given by

R̃ = R + T2R
∞∑
l=0

(
R2

) l
,

assuming the absorption within the medium is negligible and spatial shift of the rays caused
by refraction is negligible relative to the variations in the image. Thus, the total reflectivities
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and transmitivities are given by

R̃‖ =
2

1 + R‖
R‖, R̃⊥ =

2
1 + R⊥

R⊥,

T̃‖ = 1 − R̃‖, T̃⊥ = 1 − R̃⊥.

If unpolarized light is incident on the semireflector, and a polarizer with orientation α is
placed in front of the sensor, we can determine the measured intensities for the reflected
scene (virtual image) and transmitted scene (real scene) to be

fR (α) = IR
2

[
R̃⊥ cos2

(
α − θ⊥ + R̃‖ sin2 (α − θ⊥)

)]
,

fT (α) = IT
2

[
T̃⊥ cos2

(
α − θ⊥ + T̃‖ sin2 (α − θ⊥)

)]
,

where IR and IT are the true intensities of the reflected and transmitted scene, and θ⊥ is the
angle at which T̃⊥ is maximized. We can then formulate the total measured intensity as

f (α) = fR (α) + fT (α) =
(

f⊥ + f‖
2

)
+

(
f⊥ − f‖

2

)
cos [2 (α − θ⊥)] ,

where f⊥ = f (θ⊥) =
(
IR R̃⊥/2

)
+
(
IT T̃⊥/2

)
and f‖ = f (θ⊥ + 90°) =

(
IR R̃‖/2

)
+
(
IT T̃‖/2

)
.

We should notice that f⊥ − f‖ = 0.5
(
R̃⊥ − R̃‖

)
(IR − IT ). Therefore, if IR and IT are equal,

the light coming out of the semireflector (toward the camera) is unpolarized. Generally,
however, we assume that IT > IR, meaning that the f (α) is minimal at α = θ⊥. Therefore,
we conclude that the polarization of the transmitted light primarily dictates the overall
polarization of the measured light.

Solving the previous set of equations, we obtain approximations for IT (φ) and IR (φ),
assuming we know R̃⊥ (φ) and R̃‖ (φ).

ÎT (φ) =
[

2R̃⊥ (φ)
R̃⊥ (φ) − R̃‖ (φ)

]
f‖ −

[
2R̃‖ (φ)

R̃⊥ (φ) − R̃‖ (φ)

]
f⊥,

ÎR (φ) =
[

2 − 2R̃‖ (φ)
R̃⊥ (φ) − R̃‖ (φ)

]
f⊥ −

[
2 − 2R̃⊥ (φ)

R̃⊥ (φ) − R̃‖ (φ)

]
f‖ .

Again, if φ is at Brewster’s angle, then we can easily approximate IT by looking at f‖ .
However, we don’t know φ a priori. To find an estimate for φ, we assume that the reflected
and transmitted intensities are uncorrelated, which is reasonable since they come from
unrelated scenes. We can then solve for the angle of incidence by solving

φ̂ =
{
φ : Corr

[
ÎR (φ) , ÎT (φ)

]
= 0

}
.
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The estimated images will be based on several captured polarization orientations α, since
the polarizer sinusoidally modulates the intensities of the partially polarized light. The final
images will have minimal information about each other, due to the decorrelated assumption
about the two scenes Schechner et al. (1999).

Chapter Appendix: Notations

Notation Description
(̂
x, ŷ

)
Direction vectors along x- and y-axis

(
Ex , Ey

)
Electric field along x- and y-axis

(Γ, τ) Reflection and transmission coefficients, respectively

(η1, η2) Impedances of the media

θi , θt Incident and transmitted angles of the wave

Γ⊥, Γ‖ , τ⊥, τ‖ Fresnel Coefficients
−→
N Surface normal

(S0, S1, S2, S3) Stokes vector ((S0, S1, S2) describe linear polarization, while S3 describes the
circular polarization)

(I0, I1, I2, I3) Light intensity measurements corresponding to Stokes vector

(Ei (z, t) , Et (z, t)) Incident and transmitted electric fields

(Si , St ) Stokes vectors corresponding to incident and transmitted electric fields

ϕpol Polarization orientation

φ Angle of polarization

ρ Degree of polarization

n Refractive index

Ndepth Depth map

Npolar Matrix containing surface normals from polarization

A Binary operator

Ncorr Corrected normal image

R Rotation operator

Mxi ,yi Binary mask{
θ
depth
xi ,yi

, θcorrxi ,yi

}
Zenith angles obtained from Ndepth and Ncorr, respectively

D (x, y) Direct transmission

Lobject Unattenuated object intensity

gz (x, y) Point spread function of the blur

xobj Coordinates of object to be scanned

S
(
xobj

)
Object signal
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B
(
xobj

)
Backscatter signal

Lobj
(
xobj

)
Attenuated intensity

Fobj
(
xobj

)
Falloff function

Q
(
xobj

)
Illumination source

IL , IR Input intensity from left and right camera, respectively
(
A‖ , A⊥

)
Airlight polarization components parallel and perpendicular to the plane

A∞ Airlight radiance for an object infinitely far away

t (z) Transmittance of the light a distance z away
(
A‖ , A⊥

)
Lowest and highest intensity measured with a linear polarizer, respectively

c Speed of light

τ (x) Time it takes for the reflection to be detected at pixel x

Id Diffuse intensity

Is Specular intensity

Isc Constant specular offset intensity

Isv Amplitude of cosine variation

C Mueller rotation matrix

R Mueller reflection matrix

D Mueller retardation matrix
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Exercises

Maxwell’s mathematical formulation of electric and magnetic fields paved the way to our
understanding of electromagnetic wave propagation. From such formulations arose the
Fresnel equations, a set of coefficients that describe the reflection and transmission of light
with respect to the light’s polarization state. Knowledge of this polarization-dependent
light-matter interaction has spawned innovations in polarimetric imaging. In this problem
set, we will use our understanding of polarization to filter out artefacts in an image caused
by haze particles in the air.

1. Cross-Polarization Imaging Through Haze

Art photographers often use polarizing filters to improve the aesthetic appeal of their
photographs. The reflection of shiny objects creates specular highlights on an image
that can negatively impact the aesthetic quality of the image. These specular reflections
are typically strongly polarized. By orienting a linear polarizer orthogonal to the
polarization direction of the glare, we can filter out glare and produce a clean image,
as shown in Fig. 7.16. This method is known as cross-polarization. However, under
certain conditions, this reflection may not have a high degree of polarization (DoP), e.g.
imaging through haze. In such a case, cross-polarization on its own will be insufficient.
We will instead use the theory derived in the chapter to dehaze an image.

a) Capturing Polarization Images

To capture our polarization images, all we need is a linear polarizer which can be
mounted in front of the camera aperture. There are two polarization images we need
to capture: I‖ and I⊥. I‖ is the image captured when the linear polarizer is oriented
such that the intensity passing through the polarizer is at a minimum, while I⊥ is
the image captured when the amount of light passing through the polarizer is at a
maximum. This minimum and maximum can be determined by empirically rotating
the polarizer orientation.

b) Measuring and Calculating DoP and A∞

The degree of polarization (DoP) is calculated as

ρ =
Î⊥, sky − Î‖, sky

Î⊥, sky + Î‖, sky
, (7.1)

where Î denotes a measurement of the true image intensity I. The subscript "sky"
denotes a measurement of the sky. This should be calculated for each color channel
independently. Prior work has reported ρ = [ρr , ρg .ρb] = [0.28,0.25,0.22] but this
could depend on environmental conditions. You should find a larger DoP for longer
wavelengths. A∞ is the airlight radiance infinitely far away from the camera. This is
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computed as
A∞ = Î⊥, sky + Î‖, sky (7.2)

c) Modeling Airlight

The linear polarizer sinuisoidallymodulates themeasured intensity as a function of the
polarizer orientation angle, as shown in Fig. 7.15. Assuming the direct transmission
(D) is unpolarized, half of D will be transmitted to the sensor through the polarizer.
Based on the relationships derived from this figure, we can approximate the airlight
as

Â =
Î⊥ − Î‖
ρ
. (7.3)

d) Computing De-Hazed Image

The final de-hazed image can be computed for each color channel independently as

L̂ =
Î⊥ + Î‖ − Â

1 − Â/A∞
. (7.4)
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As humans, we can only see a small subset of all radiation surrounding us. While we can
see visible light, we cannot perceive the radio signals originating from our cell phones, or
the thermal radiation emanating from blackbody sources like the human body. Each of
these radiation types are characterized by differing wavelengths (or frequencies) and hold
fascinating properties worthy of further investigation. In this chapter, we will continue our
study of the plenoptic dimensions, focusing specifically on the spectral nature of light. In
particular, we will delve into the capture and analysis of spectral images, as well as its
usefulness for imaging applications such as material classification, anomaly detection, and
remote sensing.

8.1 Spectral Effects on Light-Matter Interaction

8.1.1 Formal Definition of Spectrum
Light is an electromagnetic (EM) wave, propagating through a medium with spatially and
temporally oscillating electric and magnetic fields. One of the important features of light
is its wavelength. Frequency (ν) and wavelength (λ) are inversely proportional:

c = νλ,

where c is the propagation speed of light, and ν and λ have units [Hz] and [m] respectively.
Wavelength and frequency are measures of spatial and temporal frequency, respectively,
of the wave oscillation. The range of all frequencies of the wave is known as the elec-
tromagnetic spectrum. The EM spectrum consists broadly of radio waves, microwaves,
infrared light, visible light, ultraviolet light, X-ray light, and gamma rays. Humans are only
able to perceive the visible spectrum as a quality we refer to as color. While spectrum
is continuous in nature, color is a discretization of the visible spectrum. These discussed
concepts are illustrated in Fig. 8.1.
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Figure 8.1: What is wavelength, and how do we use it in imaging? (a) Electromagnetic
(EM) waves are characterized by a wavelength. (b) Electromagnetic spectrum. (c) A
standard camera, similar to our eyes, captures visible light that reflects off a scene, from
which we extract photographs. However, images at different wavelengths capture different
information about a scene. For example, a thermal image would be useful for heat-seeking,
while an infrared image would be useful for food analysis. (d) A spectral image samples
scenes at a higher spectral frequency than normal RGB images.

8.1.2 Absorption, Reflectance, Transmittance
The interaction between light and matter is highly wavelength-dependent. Different mate-
rials have different crystalline structure. This crystalline structure can be better understood
as a periodic arrangement of electrons, which can only take on a discrete set of energy
states that satisfy Schroedinger’s wave equation. The incident photon energy is directly
proportional to frequency by Planck’s relation Hecht (1998)

E = hν,
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where h = 6.62607015 × 10−34 J · s is Planck’s constant. Since electrons can only take
on a certain set of energy states, only certain photon energies will interact with the crystal
structure of a medium. The frequency dependent photon energy results in a frequency
dependent light-matter interaction. There are hundreds of wavelength dependent interac-
tions in imaging, but students should be familiar with four primitive types: Absorption,
Reflection, Scattering, and Transmission.

Absorption Dependence: A medium will absorb a photon depending on its wavelength.
Conceptually, this occurs when the energy of the incident light is near the activation energies
of electrons in the material, enabling the electrons to absorb the light. This electron energy
is later lost to lattice vibrations. Since the energy of light is related to its frequency, it
follows that the absorption is dependent on frequency. Visually, we perceive absorption
as the opacity of a material, such as cardboard or brick. Mathematically, this is expressed
by a wavelength-dependent absorption coefficient in the context of the Beer-Lambert law
Swinehart (1962).

Reflection Dependence: Reflections are also a wavelength dependent phenomena. Con-
ceptually, this process happens analogous to absorption. EM radiation strikes atoms in a
material, whose electrons are excited. When the electrons return to a reduced energy state,
they re-emit the absorbed light. The light can either be emitted in a mirror-like fashion
(what we might refer to as “reflected light.”) or in a random direction (i.e., scattering). This
process is extremely dependent on the frequency of light.

Scattering Dependence: In everyday life, we notice that some wavelengths penetrate
through fog (e.g., radio waves) while others get scattered (e.g., light). The scattering of
light is a wavelength dependent process. Concretely, light scatters differently in a medium
depending on the size of the wavelength with respect to the particles. It is illustrative
for students to refer to Fig. 8.2 for an end-to-end example of how light scatters in our
atmosphere, making the sky appear blue. This type of wavelength-dependent scattering,
where waves are scattered by particles much smaller than the wavelength, is known as
Rayleigh scattering.

Transmission Dependence: If a light wave does not have the frequency corresponding to
the activation energy of the electron, it will not be absorbed. Instead, the light will simply
be able to pass through the medium. Visually, the more transparent an object, the more
light that has been transmitted. We see the usefulness of transmitted wavelengths when
imaging through barriers, like walls, as shown in Fig. 8.4.

The above phenomena play an important role in the way our eyes, and cameras, perceive
our surroundings. For example, the atomic structure of glass allows visible light to transmit
through the medium, making it transparent to the human eye. However, the same glass
material would be opaque to a camera sensitive to microwave wavelengths. From an
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Figure 8.2: Why is the sky blue? The interaction of the broadband beam coming from the
sun with particles in the atmosphere is highly wavelength dependent. Blue light’s shorter
wavelength causes it to undergo Rayleigh scattering in the atmosphere, which enables our
perception of a blue sky.

algorithms standpoint, this wavelength-dependent behavior gives us critical insight into the
material composition. A material’s response (i.e., reflection, absorption, etc.) to different
wavelengths of light is referred to as its spectrum, and is an excellent indicator of what
the material actually is. This makes spectral imaging one of the most powerful tools for
material classification to date. Material classification is done by compiling a dictionary of
different materials and their spectra. Amaterial is then classified by measuring its spectrum
and matching it to one of the dictionary entries.

8.1.3 Multispectral and Hyperspectral Imaging
Spectroscopy is the study of matter’s interaction with different wavelengths of light. Spec-
tral imaging combines the spatial resolution of ordinary imaging with the spectral res-
olution of spectroscopy by capturing a per-pixel spectrum. Let us consider a practical
application of spectral imaging in food analysis. A common method to identify the soluble
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(a)
(b)

Figure 8.3: Interaction between Light and Matter. (a) When light interacts with an object,
it will reflect off of it, be absorbed by it, scatter through it, transmit through it, or do a
combination of these. (b) Examining the interaction of light with an apple is a powerful,
non-destructive method of analyzing the fruit’s freshness. These interactions tend to be
wavelength-dependent, which is where spectral imaging is useful.

solids content (SSC) in fresh fruits is to use a near-infrared spectroscopy (NIRS) approach.
Consider the interaction of the fruit with light in Fig. 8.3. Though the spectrum and SSC are
correlated, scattering is most informative about the density, cell structures, and extra- and
intra-cellular matrices of the fruit tissue. Scattering information is ordinarily extracted from
imaging. NIRS does, however, still provide valuable insight into the importance of certain
wavelengths in fruit analysis. For example, the 680 nm band can be used for predicting
chlorophyll content, the 880 nm, 905 nm, and 1060 nm bands are useful for predicting SSC
content, and the 940 nm band is useful for predicting fruit firmness. By combining infor-
mation from traditional imaging (i.e., scattering profiles) and spectroscopy (i.e., spectral
measurements), we can robustly detect fresh fruit Lu (2004).

We will now make the distinction between a multispectral and a hyperspectral image,
though we will refer to both of them generally as spectral images in this text. A spectral
image is a 3D matrix, as depicted in Fig. 8.1d, with spatial dimensions x and y along one
plane, and the reflectance spectrum at each pixel along the third axis. A hyperspectral image
captures the per-pixel spectrum over some spectral band, with uniform bandwidth for each
spectral point. The band sensitivities must be continuous and cover the entire spectral band.
Hyperspectral images also capture images with narrow band sensitivities, on the order of
1 − 10 nm. Meanwhile, a multispectral image captures only a subset of the spectrum in a
spectral band, with potentially non-uniform bandwidths. The captured wavelengths in this
case are typically hand-picked based on the application. Also, the sensitivity of the bands
do not necessarily have to be continuous in the spectral domain. Refer to Fig. 8.4 for a
comparison between the two.
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Figure 8.4: Multispectral versus Hyperspectral Imaging.

(a) (b)

Figure 8.5: Seeing throughwalls withWi-Fi. An interesting application of spectral imaging
is in the use of non-traditional frequencies with Wi-Fi imaging (2.4 GHz) to image through
walls. (a) Setup of Wi-Vi imaging module Adib and Katabi (2013) and (b) Wi-Vi image
capturing different poses through a wall [ref].

8.1.4 Applications of Non-Visible Light
Most light is invisible to the human eye, but that doesn’t make these wavelength regimes
unimportant. We point to a few applications in which the utilization of non-visible light
is more effective than visible light. Such physical considerations are important to keep in
mind when designing imaging systems (e.g., imaging through or around objects).

Wi-Fi Imaging: Wi-Fi wavelengths are on the order of several centimeters, allowing
these waves to penetrate through non-metallic walls without interacting with the molecular
structure, unlike visible light which is significantly attenuated through walls. These Wi-Fi
signals propagate through the wall, interact with objects in a scene, and reflect back to
the receiver on the other side of the wall. Fig. 8.5 shows the setup of such a system and
the kinds of images we can extract with Wi-Fi imaging modules. Wi-Fi Vision has been
applied to see through walls, and even monitor heart rates and detect gestures through walls
Adib and Katabi (2013).

https://spectrum.ieee.org/telecom/wireless/household-radar-can-see-through-walls-and-knows-how-youre-feeling
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Thermal Imaging: Visible light imaging of humans fails when the reflectance of visible
light to the camera is weak. This can occur when (1) the scene is weakly illuminated or
(2) the light undergoes multiple reflections and scattering. In such contexts, measurement
of thermal images is particularly useful. Thermal imaging solves (1) by making the person
a light source, since humans can be approximated as blackbody emitters in the long-wave
infrared (LWIR) regime. In doing so, (2) is also dealt with since we are no longer measuring
visible light reflected off of a person. Instead, we are measuring light emitted from the
human, which results in a stronger signal since no power is lost due to scattering and
transmission into the skin. Thermal non-line of sight (NLOS) imaging makes use of this
feature, and is discussed in Chapter 10.

X-Ray Imaging: While visible light primarily reflects and thermal radiation is overwhelm-
ingly emitted from human skin, X-rays transmit through skin. This makes them particularly
useful for computed tomography (CT), projected radiography, and positron emission to-
mography (PET). All of these are able to image through our skin to take images of bone
structure and monitor blood flow and brain activity.

8.2 Color Theory

Color is the human perception of EM radiation in the visible spectrum, which falls in the
range of 400 − 700 nm. As seen in Fig. 8.1b, this range is extremely narrow - the human
eye is sensitive to less than one-trillionth of the possible frequencies of light. Most of
us are familiar with colors in everyday life as being a descriptive notion, such as “blue”,
“red”, “yellow”, or “green”. The field of color science (also known as colorimetry), seeks
to formalize these descriptive notions into a mathematical and psychological structure. In
what follows, we discuss two important keystones of color theory.

8.2.1 Retinal Color
The first keystone is Retinal color, describing the human perception of color that corre-
sponds to the activation of photoreceptor cells in the retina known as cones. There are
three types of cones: L-cones,M-cones, and S-cones, corresponding to long, medium and
short. The nomenclature stems from sensitivity of each cone type to long, medium, and
short wavelengths. An illustration of a cone cell and its corresponding spectral sensitiv-
ity curves is shown in Fig. 8.6a. Please note that the spectral sensitivity curves slightly
vary between individuals. Cone cells are connected to neurons. The differential pattern
of neurons that fires is sent to the brain as electrical signals to yield the perception of
color. University courses in computational imaging often focus on retinal color, as one
can mathematically express this using a vector space with 3 elements (activations of L,
M, and S-cones). Although retinal color is closer to a mathematical science (in contrast
to perceptual color, discussed in the next paragraph), there are several nuances which are
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(a) Retinal Sensitivity to Color

(b) Illumination Illusions
(c) Retinal vs. Perceived Color

Figure 8.6: (a) Retinal Sensitivity to Color. Our eyes have three types of cone cells: L-
cones,M-cones, and S-cones. Each cone is optimized to sense light at differentwavelengths.
The spectral absorption of each cone is shown on the right. (b) Illumination Illusions. Our
brain adapts to different illumination conditions to render a scene with spatial and color
consistency. (c) Retinal vs. Perceived Color. Even with a blue overlay, our visual system
is still able to correctly label each color in the bottom image.

difficult to model, in general, by mathematics alone. For example, different individuals
have biological variations in the structure and composition of L, M, and S-cones. For ex-
ample, in canonical forms of color blindness, one type of cone is missing (e.g., the L-cone
corresponding roughly to peaks in “red” wavelengths). However, one can say that “we
are all color blind” (phrase courtesy: Prof. Wojciech Matusik, MIT) as there are different
spectral combinations that the majority of humans will perceive as the same color! These
special colors are known asmetamers. An example would be the use of a mixture of N > 1
lights that, mixed together, yield a reddish color that most humans cannot distinguish from
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a single laser at 625 nm. In this case, the mixed color is metameric to the laser. Please
note that “metameric” does not mean mathematically equal to - it means that a controlled
sample of humans perceive the color as the same.

8.2.2 Perceptual Color
The second keystone of colorimetry is Perceptual Color, which encompasses, not just
retinal color, but also a remarkable adaptation by the human visual system to illumination
and context cues. Perceptual color is perhaps best illustrated by example. In Fig. 8.6c, a
scene is overlaid with a blue tint. Even with the blue overlay, most humans can see the
photograph and ascertain that certain colors are “red” or “orange”. However, when zooming
into a subset of pixels, we see that all the colors in the tinted range are what one might
ordinarily perceive as “blue”. In this example, the human brain is adapting to variations
in illumination. This same principle (not shown) applies to the reason we can identify
the colors of a hot air balloon in different illuminant conditions, ranging from the reds of
sunset and sunrise to the blues of daylight. The human brain knows that light reflected
from the same object can stimulate different retinal cones depending on the time of day.
This principle, where the human visual system is able to identify colors under different
illuminants, is known as color constancy. Another example of perceptual color is the
“Checker Shadow Illusion”, published by Ed Adelson, and reproduced in the right half of
Fig. 8.6b [ref]. Here, the squares A and B are exactly the same retinal color. However, the
human brain is able to correctly account for illumination to render a checkerboard pattern.

Taken together, color theory is highly specific to individuals. A viral internet sensation in
2015, known as “The Dress”, underscores the diversity in how individuals perceive color.
In February of 2015, a bride and her friends in Scotland could not come to an agreement
on the color of the dress. The photo was posted to social media and quickly found its way
to mainstream media in New York City. Just under 60% of people perceive the dress as
blue/black, 30% describe it as white/gold, and 10% as other colors. What color do you
perceive the dress to be? Color constancy is thought to be the cause of this difference in
perception, where individuals have a different “correction factor” for ambient illumination.

8.2.3 Information Loss in Human-Inspired Vision
Color theory has wide applications to the engineering of computational imaging and display
systems. For example, to obtain color images, the ubiquitous Bayer filter is conventionally
placed on top of a monochrome camera sensor. As illustrated in Fig. 8.10, the Bayer filter
consists of a mosaic of red, green, and blue (RGB) filters. This enables camera pixels to
record luminance projections that mimic human cone cells. Within each 2 × 2 cell are 1

http://persci.mit.edu/gallery/checkershadow
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Figure 8.7: Capturing a spectral image. A multispectral image can be captured either
by (a) passive illumination or (b) active illumination. With active illumination, external
spectral light sources are used (either by placing several filters in front of one broadband
source, or by using several narrow band sources). Passive illumination setups place several
narrow band filters in front of the focal plane array.

red pixel, 2 green pixels, and 1 blue pixel. Why was green chosen as the color to duplicate?
Hint: study the cone response in Fig. 8.6a 7.

Human perception plays a critical role in standards for how color images are converted to
grayscale. Concretely, if one seeks to convert a color image given in the CIE colorspace to
grayscale, the following equation is used:

Ylinear = 0.2126 · Rlinear + 0.7152 · Glinear + 0.0722 · Blinear,

where the coefficients are based on human perceptual sensitivity to these colors (i.e., green
has the highest and blue has the lowest [ref]). The linear coefficients indicate that the
electrical signal measured by the retina is approximated to be linearly proportional to the
optical power. Note, however, that the only quantity that will be measured by the retina is
Ylinear. Therefore, A = (Rlinear,Glinear,Blinear) is irretrievably lost information since infinite
values of A can result in the same value of Ylinear, resulting in a loss of spectral information.
This is a critical weakness of human-inspired imaging systems.

7Answer: As the Bayer filter is a 2 × 2 repeating pattern, it was desirable to choose one of the filters to duplicate.
Green was chosen because the eye has the highest sensitivity to green – it overlaps in response to the M and S
cones.

https://www.w3.org/Graphics/Color/sRGB
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(a)

(b)

Figure 8.8: Wavelength separation by (a) prisms and (b) diffraction gratings.

8.3 Optical Setups for Spectral Imaging

In this subsection, we will restrict our scope to multi- and hyper-spectral imaging at optical
wavelengths, defined as the wavelengths of light that conventional camera sensors can
capture (300 − 1000 nm wavelengths). At the top-level, there are two motifs that are used
to obtain multi- and hyper- spectral images. Concretely, it is possible to use: (1) a filter on
the imager side; or (2) selective illumination with specific spectral sources. An illustration
of these two basic approaches to multispectral imaging is shown in Fig. 8.7. Although
the top-level idea may seem simplistic, there is richness in the design of filters. Systems
that simultaneously capture both spectral and spatial features typically incorporate some
form of wavelength separation through gratings or prisms. Other systems use selective
filters that only allow a narrow band of light to pass through. These tools and principles
are combined in different ways for different spectral applications, depending on the desired
cost, acquisition time, and spectro-spatial resolution of the setup, as we will analyze next.

8.3.1 Prisms, Gratings, Scanners
Prism and diffraction gratings both spatially separate incoming light into their constituent
wavelengths, but do so using different physical mechanisms. Prisms utilize the property
of dispersion, a phenomena in which light of different wavelengths propagating through a
certain medium will bend at different angles. The wavelength-dependent angle of bending
results from a wavelength-dependent index of refraction. The result of this is a spatially
separated array of wavelengths. Diffraction gratings, on the other hand, use the property
of diffraction. A diffraction grating consists of a planar opaque material with uniformly
spaced slits, with apertures much smaller than the wavelength of the incident light. The
wavefront will behave like point sources at the slits, by Huygens-Fresnel principle, as they
impinge on the plane. The point sources propagating through these slits will constructively
and destructively interfere along the axis parallel to the gratings. This interference pattern
will yield intensity peaks at different values along the z-axis for different wavelengths,
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(a) (b)

Figure 8.9: Spectro-Spatial Scanning. (a) An example of a pixel-wise scan of an image.
The scanner will capture a spectrum for each pixel, then iterate to the next pixel and repeat.
(b) Satellite hyperspectral imaging using a push-broom camera.

thereby separating light by wavelength. A comparison of these principles is shown in
Fig. 8.8.

Consider the use of a prism in front of a DSLR camera as shown in Fig. 8.8(a). In such
a setup, it is common to account for factors like spatially-variant dispersion by including
collimating optics. A coded aperturemaskwould also provide ameans of obtaining spectral
cues, allowing for a constrained reconstruction Baek et al. (2017). Similarly, the wavelength
separation can also be done by placing diffraction gratings in front of the sensor, as shown in
Fig. 8.8(b). In such a setup, the spatial resolution will have to be sacrificed for the spectral
dimension Alvarez-cortes et al. (2016). The key takeaway, however, in both setups is that
the wavelengths are spatially separated, meaning that their reconstruction algorithms will
differ from non-separation based methods.

Many standard spectral imaging setups incorporate some form of scanning to capture a
spectral image. The scanning can be either spatial, where a detector scans across each pixel
of an image and collects the spectrum, or spectral, where a 2D image is re-captured for each
spectral point as shown in Fig. 8.1d. An example of such a scanning system is shown in
Fig. 8.9a. While accurate, scanning is often too slow and requires laboratory-like settings,
making them infeasible for practical applications. Another example of a scanning spectral
camera is the push-broom camera. A push-broom camera only images one spatial line in
a scene at a time. This corresponds to a measurement of a 1D array of pixels. Using either a
dispersive or diffractive element, the light is separated onto a 2D plane. Along one axis lies
the wavelength and along the other lies the spatial coordinate. A full hyperspectral image
is obtained by “sweeping” across the scene. The measurement process of a push-broom
camera imaging a point on Earth from space is illustrated in Fig. 8.9b.
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(a)
(b) (c)

Figure 8.10: Color Filter Arrays. Side-by-side comparison of (a) Bayer filter and (b)
multispectral filter array, specifically a CMYG CFA. (c) Spectral sensitivity of C, M, Y,
and G channels with a QBPF (solid line) and without a QBPF (dashed line) Themelis et al.
(2008).

8.3.2 Multispectral Filter Arrays and Compound Imaging
Most cameras today employ a color filter array (CFA) placed in front of its focal plane array
(FPA), the most common being the Bayer filter. The Bayer filter is an arrangement of red,
green, and blue (RGB) filters, as shown in Fig. 8.10a. It aims to mimic the sensitivities of
the L, M, and S cones of the human eye. A 2D grid of RGB values are measured, which
are then demosaiced into a 3D RGB color image. The problem with such a system is that
it integrates the product of a scene’s spectral reflectance with the spectral response curves
of just three filters, giving just a single output for 3 broad spectral ranges. This inevitably
causes spectral information loss. However, the concept of a CFA can be extended to
multispectral images for higher spectral resolution.

Consider Fig. 8.10b, which shows a CMYG (Cyan, Magenta, Yellow, Green) multispectral
filter array (MSFA). The C,M, Y, andG filters still have broad spectral sensitivity. However,
by inserting another quadruple-bandpass filter (QBPF) on top of the CFA, the light is filtered
twice before reaching the sensor. As shown in Fig. 8.10c, this noticeably improves the
spectral resolution of the camera. While there are parallels between the optical hardware
in CFAs and MSFAs, the spectral reconstruction and demosaicing process are slightly
different, which we will go over in detail in Section 8.4. Also common nowadays is the use
of a tunable filter. Such filters can change their spectral sensitivity without drastic changes
in bandwidth or transmission. One example is the liquid crystal tunable filter (LCTF),
which electronically modulates liquid crystals to only transmit certain wavelengths. The
use of electronically controlled filters (rather than mechanical) enables compact optical
hyperspectral setups that can be captured within seconds or even milliseconds with high
spectral performance.

Building on the use of CFAs, some setups use design principles of a compound imaging
system for multispectral image capture. A compound imaging system captures several
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(a)

(b)

Figure 8.11: (a) Multispectral compound imaging setup. A compound imaging setup
consists of several units, each one capturing an image at different wavelengths. The units
capture spatially offset versions of the same scene. (b) Hybrid Capture. An optically
parallelized setup to capture an RGB and hyperspectral image simultaneously.

images by using units within the optical setup. Each unit will capture a different aspect of
the same scene (i.e., different wavelengths) at spatial offsets, based on the physical location
of each unit. The set of these unit images form a compound image. The optical setup for
such a system is depicted in Fig. 8.11a.

The key idea in such a setup is that each point in the scene will be observed by all the units.
This means that a spectrum can be measured for each spatial location in a scene, depending
on the location of the observation plane. However, the main challenge is combining the unit
images in post processing to account for spatial offsets Shogenji et al. (2004). This can be
done via cross-correlation between unit images, pixel rearranging, or other methods. The
advantage of such a compound system lies in its compactness, compared to other setups
which need to incorporate additional bulky hardware (e.g., tunable filters, spectral sources,
etc.). However, these systems also require very precise measurement environments that
may be hard to enforce in a practical environment. Multispectral image mosaicing operates
on a similar principle. In such a setup, a camera with spatially varying spectral filters is
panned across a scene to extract a wide field of view multispectral image by observing each
point multiple times Schechner and Nayar (2002).

8.3.3 Spectrum-RGB Parallel Capture
Meanwhile, other methods attempt to tackle the inherent low spatial resolution of spectral
images more robustly and directly. Low spatial resolution is a consequence of difficulty in
spectrallymultiplexing every point in a scene. In certain cases, the lower spatial resolution is
also caused by diffraction limits when imaging at longer wavelengths. One widely explored
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Figure 8.12: Multiplexed Illumination. Methodically illuminating the scenewithmore than
one spectral source at a time can enable efficient data capture and higher reconstruction
accuracies. An example of the top 3 optimal illumination patterns are shown with two
allowed measurements.

optical setup to improve spatial resolution parallelizes the capture of a hyperspectral and
RGB image. The incoming light beams are separated using a beamsplitter, which separates
light into two directions equally. Along one optical path lies an high spatial resolution
RGB camera, and along the other lies a broadband monochrome camera, as shown in the
schematic in Fig. 8.11b. The RGB and spectral image can be fused together by leveraging
the spectral, spatial, and temporal (for videos) correlation of the pixels Cao et al. (2011).
We will analyze a linear algebraic approach to combine an RGB image with high spectral
resolution multispectral images in Section 8.4.1.

8.3.4 Coded Spectral Illumination
So far, we’ve seen that a natural way to take a multi- or hyper-spectral image is to keep the
scene illumination constant, and vary the camera’s spectral sensitivity (via filters). We now
consider the method of changing the illumination source, rather than the pixel’s sensitivity.
Active illumination is the process of using controlled light sources to illuminate a scene,
in contrast to passive illumination, which relies exclusively on ambient light. The use of
a controlled light source enables post-processing algorithms to take advantage of spectral,
spatial, and/or temporal features of the illumination pattern for better image reconstruction.
In certain setups, multispectral illumination, rather than multispectral detection, can also
enable faster image acquisition.

Consider a scene actively illuminated by Q narrow band sources (unlike Fig. 8.7b, which
depicts one broadband source occluded by spectrally discriminative filters).



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

298 Chapter 8 Spectral Imaging

Rather than turning on each source sequentially, we consider the method of coded illu-
mination, in which we determine the optimal lighting pattern for image reconstruction.
Fig. 8.12 gives an example of such an optimized lighting pattern Park et al. (2007). This
particular lighting pattern usesmultiplexed illumination, in which the scene is illuminated
by multiple sources at a given time. By using a multiplexed illumination pattern, the num-
ber of needed measurements is also reduced. Every light source q has a mutually distinct
spectrum Lq (λ) known a priori. The illumination for frame n is given by a weighted sum
of each source

pn (λ) =
Q∑
q=1

dnqLq (λ) ,

where 0 � dnq � 1. The key idea is to find a basis D that minimizes the least-squares
error of the image reconstruction, for a predefined number of allowed measurements. The
example in Fig. 8.12 assumes two allowed measurements per image. An ideal basis will
fully utilize both light sources, have linearly independent illuminations within each frame,
and keep total illumination power similar across frames.

Passive illumination setups are often negatively impacted by ambient noise, and struggle
to extract reflectance properties of surfaces. A useful consequence of active illumination
is that it provides a way to modulate incident light, enabling filtering of ambient light.
Consider the setup in Fig. 8.7a. In a passively illuminated scene, the radiometric response(
ρ
xy
k

)
of a given pixel P = (x, y) can be modeled as

ρ
xy
k
= t

∫
Rk (λ) Sxy (λ) E xy (λ) dλ + N (αt, αt)

where t is the integration time, Rk (λ) is the camera’s response function at channel k, Sxy (λ)
is the reflectance spectral distribution at P, E xy (λ) is the spectrum of the incident flux at
P, and N (αt, αt) is additive Gaussian noise. Note that the mean and variance of the noise
are proportional to the integration time. If we add an illumination source, the flux can be
modeled as E xy (λ) = Axy (λ) + L (λ)Φi (λ), where Axy (λ) is the ambient illumination,
L (λ) is the spectrum of the light source (known a priori), and Φi (λ) is the transmission
spectrum of filter i. If we take a measurement with filter i and j, each having integration
time ti and tj , we find that their difference (after normalizing by t) is given by:

tj ρ
xy
k ,i

− tiρ
xy
k , j

≈ tj ti

∫
Rk (λ) Sxy (λ)Φi (λ) L (λ) dλ

− titj

∫
Rk (λ) Sxy (λ)Φj (λ) L (λ) dλ + N

(
0,2αtitj

)
.

Note that we have effectively filtered out the ambient illumination Axy (λ). By taking several
such measurements, we can construct a basis from which we can recreate the spectrum for
each pixel. Such filtering can’t be done in a passive illumination setup, since the ambient
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Figure 8.13: Dark Flash Photography. Capturing non-intrusive, high-quality images can
be challenging in dimly lit environments. One way to get around this hurdle is by actively
illuminating the scene with an infrared light source. We can then leverage the spectral
proximity of red with infrared wavelengths to constrain the image reconstruction problem
Krishnan and Fergus (2009).

illumination would be affected differently for each filter in the CFA in such a situation Chi
et al. (2010).

An interesting and unique application of active illumination is in dark photographyKrishnan
and Fergus (2009), where the scene is dimly lit. Measurements made at such low light
intensities are corrupted by Poisson noise in the sensor. On the other hand, bursts of light
caused by a flash unit can be disruptive to the scene. The innovation here is to illuminate
the scene with infrared light so that the flash will be invisible to the human eye, hence
leaving the scene undisturbed. By combining a dark flash photo (F) with an ambient image
(A), a color image can be woven together in post-processing. Contrary to Flash/No Flash
photography Petschnigg et al. (2004), this method, by design, has non-overlapping ambient
and flash illumination since the illumination sources are at different wavelengths. However,
while the spectral intensities of A and F will be mostly different, the intensities will be
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correlated at the red and IR wavelengths due to their spectral proximity. We examine
this spectral relationship by analyzing the measurements taken for a 1D scanline across
three colored squares (blue, magenta, yellow). In Fig. 8.13a, the black lines correspond to
measured IR intensities (F1) and colored lines denote intensities from the red channel of
the camera in a long exposure shot (L1). Even though these measured intensities are rather
different, note how the intensity drops are spatially aligned at the edges of the squares for
both F1 and L1. This correlation at the edges is even more noticeable when analyzing the
gradients ∇F1 and ∇L1 in Fig. 8.13b, and the difference of gradients (DOG) ∇F1 − ∇L1 in
Fig. 8.13c. We see that the DOG is sparse, since the DOG histogram in Fig. 8.13d has a
sharp peak centered at 0, meaning that most DOG values are 0. However, when the same
measurements and calculations are made with the ambient light in Fig. 8.13e-h, we see
that the DOG is no longer sparse. Using what we learned in Fig. 8.13a-d, we can now
reconstruct our final image R by (1) minimizing the differences in intensity between A and
R, (2) making sure ∇F1 −∇R1 is sparse, and (3) making sure ∇F1 −∇R1 is sparse. Sparsity
can be enforced by adding an L1 norm to the cost function Krishnan and Fergus (2009).
In this context, we use spectral measurements to act as a useful constraint in recreating an
RGB image.

8.4 Computational Methods for Analyzing Spectral Data

8.4.1 Spatio-Spectral Matrix Representations
Linear algebra gives us the ability to represent images as a linear function of basis vectors.
The expressive capability of a linear basis is a powerful tool at our disposal when we
seek to express an image in terms of its spatial and spectral features. In multi- and hyper-
spectral images,mixed pixels are often present. Mixed pixels containmore than one distinct
substance, either because (1) the spatial resolution of the camera is too low, (2) the substance
is a mixture of several different materials, or (3) both. Spectral unmixing is an inverse
problem that aims to decompose each pixel into its constituent spectra (endmembers)
and spectra intensities (abundances) Keshava and Mustard (2002). In other words, it
aims to represent each pixel’s spectrum as a linear combination of a set of basis spectra
(corresponding to a set of a few fundamental basis materials). While work has been done
in learning representations of spectral images for hyperspectral image reconstruction Choi
et al. (2017), this chapter focuses on analytic methods for interpretable decomposition of
spectral images.

Let us consider the hardware setup from Fig. 8.10b, where we stack a QBPF on the CMYG
CFA to increase the spectral sensitivity of our imager. A given pixel in the camera will have
a sensitivity of wXi , where i = {1,2,3,4} refers to the QBPF filters and X = {C,M,Y,G}
refers to the CFA filters. If Iλi is the intensity of light reaching the filter at wavelength λi ,
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then the measured intensity (SX ) at the sensor for filter X is given by

SX = wX1 (Iλ1) + wX2 (Iλ2) + wX3 (Iλ3) + wX4 (Iλ4) .

This can be further generalized for all filters as a matrix multiplication s =Wi.


SC
SM

SY
SG



=



wC1 wC2 wC3 wC4

wM1 wM2 wM3 wM4

wY1 wY2 wY3 wY4

wG1 wG2 wG3 wG4





Iλ1

Iλ2

Iλ3

Iλ4



.

The calibration matrix W can be experimentally found by measuring m different color
samples with known reflection spectra i1, · · · , im, which can be concatenated into a matrix
I ∈ R4×m. We then obtain a series of measurements s1, · · · , sm, which we concatenate into
a matrix S ∈ R4×m. We can then solve for the calibration matrix by W = SI−1, where I−1

is the pseudoinverse of I and W ∈ R4×4. One condition is that m � 4. This ensures that I
has linearly independent rows, which ensures that I has a right inverse. Once the W matrix
is found, we can use S−1 as a transformation to go from sensor measurements to spectral
intensities, by i =W−1s. This provides a conceptually straightforward way to increase the
spectral resolution of a standard CMYG camera.

Now, we will consider ways to digitally stitch together a low spatial resolution hyperspectral
imageYhs ∈ Rw×h×S and a high spatial resolutionRGB imageYRGB ∈ RW×H×3 (W   w and H   h),
as captured by the setup in Fig. 8.11b. Our goal is to extract a high-resolution hyperspectral
image Z ∈ RW×H×S . We try to extract a high-dimensional output from low-dimensional
inputs, which means that the problem is underconstrained and we must make some assump-
tions about the scene. In this case, we assume that there is a very small number M of distinct
materials in a scene. We also assume that scene radiance as a function of wavelength is
a smooth function, and so can be expressed with fewer basis functions Kawakami et al.
(2011). The reader should note that the mathematical assumptions made are derived from
optical properties of the scene and may differ from application to application.

We first claim that Yhs and YRGB are linear functions of Z, such that Yhs = PhsZ and
YRGB = PRGBZ. For a scene containing M different materials, we can express the spectrum
Z (i, j) at point (i, j) as

Z (i, j) ≈
M∑
m=1

amh (i, j) = Ah (i, j) ,

where am is the vector corresponding to the reflectance spectrum of material m and h (i, j) =
[h1 (i, j) , h2 (i, j) , · · · , hM (i, j)] are scaling coefficients. Now, we can express Yhs (i, j,∗) as
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a sum of pixels in a spatial window Wi j .

Yhs (i, j,∗) ∝
∑

k ,l∈Wi j

Z (i, j,∗) = A
∑

k ,l∈Wi j

h (k, l) = Aq (i, j) .

This formulation comes from the fact that Yhs is a low spatial resolution version of Z, so
the spectrum measured at a point in Yhs is actually a combination of different spectra in
pixels surrounding it. Intuitively, this is analogous to colors in nearby pixels getting mixed
(i.e., pixelated) in a low-resolution image.

Using this information, we can now express Yhs as a matrix factorization, Ỹhs = AQ, where
Ỹhs ∈ RS×wh , A is the reflectance spectra matrix, containing the spectra of M materials in
its column space, and Q is the spatial matrix, containing the fractions of material found at
every spatial point. A common method to solve for such a factorization is Gauss-Newton
nonlinear optimization, with a constraint that the 1-norm of Q be minimized. The 1-norm
constraint comes from the fact that we assume that there are very fewmaterials in the scene.

We now search for h (i, j). We do so by using the previous assumption that

YRGB = PRGBZ = PRGBAh (i, j) .

We use the A calculated in the previous step, and search for a h (i, j) that satisfies this
equation and has the sparsest representation. Using our estimated value for h (i, j), we can
calculate our high-resolution spectral image

Z̃ (i, j,∗) = Aĥ (i, j) .

We see that by making certain assumptions about the structure of the image data, we can
decompose two images of the scene into their spatial and spectral features, then recombine
these features into a single high-resolution hyperspectral image by matrix multiplication
Kawakami et al. (2011). Related work has extended these principles to combine panchro-
matic (low spectral information) images with high spatial resolution for hyperspectral
superresolution in satellite imagery Wang et al. (2010); Nguyen et al. (2011); Li et al.
(2013) in a field known as panchromatic superresolution.

The assumption of few distinct materials in a natural scene is a rather common one, and
of great significance considering how well it tends to model hyperspectral image spaces.
It supports the idea that a hyperspectral image can be expressed accurately as a projection
onto a low-dimensional subspace contained by few basis spectra. Optical hardware can
also be developed in such a way that captured measurements are a projection of the spectral
image onto this subspace, eliminating the need to capture a spectrum for each spatial point
Saragadam and Sankaranarayanan (2019). Hyperspectral anomaly detection applications
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Figure 8.14: Principal Component Analysis (PCA). PCA seeks to represent data in a
coordinate system as to maximize the variance of the data’s projection onto each axis.
Observe that byminimizing the least squares error of the projection, the axis alsomaximizes
the variance of the projections.

build on this principle by modeling the image as a sum of a low-rank background and
sparse anomalies Saragadam et al. (2017). These physical assumptions (anomalies →
sparse, spectral background→ low rank) can inherently inspire end-to-end design of image
capture systems.

8.4.2 Dimensionality Reduction
We now consider linear algebraic principles in reducing the dimensionality of the hyper-
spectral data. As the amount of captured data increases, the data will likely not only contain
redundant (i.e., linearly dependent) information, but also become more difficult to compu-
tationally process. Principal component analysis (PCA) is a popular technique to reduce
the dimension of hyperspectral data. In the context of spectral imaging, PCA searches for a
transformed v-dimensional coordinate space, where v is the number of wavelengths and n is
the number of pixels in the image Baronti et al. (1998). The transformed coordinate system
consists of axes that are highly uncorrelated (i.e., orthogonal) to each other. Each vector
in the transformed v-dimensional basis is referred to as a principal component (PC). An
important result of PCA is that by projecting the hyperspectral data into its PCs, the data
becomes more interpretable since it enables analysis of fewer, independent features of the
data.

We now outline the steps to perform PCA on a dataset. We start off by subtracting the
average spectrum from every spectral point (i.e., zero-mean data). Then, we determine an
axis, which we denote PC1, such that the residuals of the projections of the data points onto
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Figure 8.15: Statistical Representation of Spectral Images. (a) PCA representation of
patches in a hyperspectral image. (b) Log scale of variance of first 200 PCs.

this axis will be minimized. Mathematically, we formulate this as

min
‖u‖=1

1
N

N∑
i=1

��xi −
(
u�xi

)
u
��2
.

We state without proof that this formulation is equivalent to finding a PC1 such that the
variance of the projection is maximal. However, one can intuitively grasp this concept
by contrasting two different projections as shown in Fig. 8.14, and noticing that the data
projections are more spread out in the optimal projection. We repeat this process of
projecting data onto an axis to maximize variance until we find PC1,PC2, · · · ,PCn. This
idea of maximizing variance within each PC is at the heart of PCA, and perhaps the most
important concept to understand. We again state without proof that all the PCs of the data
can be found by extracting the eigenvalues and eigenvectors of the covariance matrix of the
zero-meaned data. The magnitude of the eigenvalues indicates how great the variance is
along the axis given by the corresponding eigenvector Abdi and Williams (2010).

Since we want to condense our image representation, we only choose the eigenvectors with
the r largest eigenvalues to be our PCs (r � v). While dropping principal components
will reduce the reconstruction accuracy, this accuracy is not significantly affected if the
eigenvalues are small for that PC. A PC with low variance indicates that most (or all) of the
data share this feature, meaning that the feature is uninformative. This idea that a spectral
image can be represented within a few principal components is also a testament to the idea
that any pixel in a scene can be represented by a mixture of a few materials, i.e., a linear
combination of a few spectra Jaaskelainen et al. (1990).



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

8.4 Computational Methods for Analyzing Spectral Data 305

Figure 8.16: Image Demosaicing using (a) color difference interpolation, (b) residual
interpolation, and (c) adaptive residual interpolation.

Our new condensed data representation Z can be found by projecting measured data onto
these PCs, which is done by a simple matrix multiplication Z = UT (Y − µ), where Y is the
measured data, U is the matrix containing the r principal components in its column space,
and µ is a matrix containing the mean of the spectrum along every point.

We will now use principles from PCA to gain a glimpse into the statistical representation
of hyperspectral images, and interdependencies between spatio-spectral features. Consider
a real-world hyperspectral X, separated into P × P spatial patches. Performing PCA on
each patch separately yields a representation that looks something like that in Fig. 8.15.
As shown on the right side, the variance of the data contained in the PC rapidly decreases.
In fact, 99% of the variance in the data is contained in the first 200 basis vectors (out of
∼ 2000).

Note that many patches share similar geometrical structure, suggesting similar intra-patch
spatial relationships. Yet, they have different spectral features, evident through their dif-
ferent colors. This suggests that the data is separable into spectral and spatial components
via matrix factorization. Further probabilistic analysis into the coefficients in the spectral
and spatial matrices reveal that for a given spatial point, spectral components are non-
independent Chakrabarti and Zickler (2011). Such analysis gives us an idea of how PCA
can be leveraged in research, as well as some insight into the underlying structure of a
hyperspectral image. However, much research is still being devoted to both understanding
these spatio-spectral statistical representations and how to harness them effectively.
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8.4.3 Multispectral Demosaicing
In 2.2.4, for CFA-based spectral setups, we alluded to the need to demosaic a digital RGB
grid to interpolate it into a color image. In this subsection, we will make the distinction be-
tween demosaicing an RGB image and demosaicing a multispectral image using difference
and residual interpolation. For an RGB image, a G image is first interpolated using only the
G measurements. Then, the R and B channels are interpolated either using difference in-
terpolation, as shown in Fig. 8.16a, or residual interpolation (RI), as shown in Fig. 8.16b.
Both are valid approaches for RGB demosaicing, but state-of-the-art tends to use RI Kiku
et al. (2013) as smoother residuals often lead to higher interpolation accuracies.

For multispectral images, the CFA is replaced with a MSFA. In particular, we will examine
the approach of adaptive RI (ARI) to demosaic outputs from the MSFA. ARI combines
principles from minimized-Laplacian RI (MLRI) and iterative RI (IRI). Unlike RI,
which seeks to minimize the magnitude of the residuals, MLRI seeks to minimize the
squared Laplacian energy E of the residuals, given by

E
(
ap,q

)
=

∑
i, j∈ωp ,q

(
Mi, j ∇̃2

(
Ri, j − Ři, j

))2
,

where M is a 2D binary mask, having a value of one for red pixels and zero for others
(assuming we are interpolating red pixels). ωp,q is a window around a pixel (p,q), while
Ri, j and Ři, j are the ground truth and estimated value, respectively, of the pixel (i, j). IRI
is similar to traditional RI, but includes an iterative component as shown in the dashed line
of Fig. 8.16b. The interpolated red image in iteration k is used to guide the upsampling in
iteration k + 1. The iterations are stopped based on the magnitude and smoothness of the
residuals. The blue image is interpolated in a similar manner.

ARI first interpolates the G band, as shown in Fig. 8.16c. The interpolation is broken
down into n − 1 streams (excluding the G band), where n is the number of spectral bands
being sampled. The G values are interpolated at the pixel locations of the other bands by
adaptively choosing the iteration value for each pixel in IRI and methodically combining
RI and MLRI estimates. All the other bands are similarly calculated iteratively with guided
upsampling from the G image. Demosaicing a multispectral image is more challenging
than demosaicing an RGB image since each spectral band is sampled at a lower spatial
frequency Monno et al. (2017). This is why more sophisticated algorithms are needed, one
example being ARI.

Chapter Appendix: Notations
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Notation Description

c Speed of light

ν Frequency

λ Wavelength

h Planck’s constant

E Incident photon energy

Lq (λ) Spectrum of light source q

pn (λ) Illumination for frame n

ρ
xy
k

Radiometric response

Rk (λ) Camera’s response function at channel k

Sxy (λ) Reflectance spectral distribution at (x, y)
Exy (λ) Spectrum of the indicent flux at (x, y)
Axy (λ) Ambient illumination

Φi (λ) Transmission spectrum of filter i

Yhs Low spatial resolution hyperspectral image

YRGB High spatial resolution RGB image

Z High-resolution hyperspectral image
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Exercises

Color images broadly capture the reflectance of a scene at three wavelength peaks, i.e. red,
green, and blue (RGB).Multispectral images go one step further, capturing a scene at several
peak wavelengths with narrow-band spectral sensitivities. This increased information
capacity provides us with the ability to better understand a scene’s composition. In this
problem set, we will learn to (a) sustainably process this increased information content and
(b) render scenes using hyperspectral information.

1. Spectral Image Compression Using PCA

Hyperspectral images densely store spectral information about every pixel in an image,
making themhighlymemory intensive, computationally different to process, and uninter-
pretable. Raw spectral data often contains redundant information due to interdependent
spatio-spectral features. The goal of this section is to apply principal components anal-
ysis (PCA) to a multispectral image and extract meaningful features from just a few
independent principal components

a) Capturing the Image

Either capture a spectral image using filters or use an online database such as the
Manchester Hyperspectral Image Database for this section Foster et al. (2006). If you
have a relatively small number of captured wavelengths, you will find better results
with less nuanced scenes.

b) Extracting Covariance Matrix

Our image data is represented as matrix A ∈ Rw×h×n, where w and h are the width
and height, respectively, of the images and n is the number of spectral points. Flatten
this matrix such that all pixels are along one dimension. This should form a new
matrix A′ ∈ Rwh×n. We will then subtract the mean spectrum (calculated over all
pixels), and subtract this mean spectrum pixel-wise. This will give us the de-meaned
matrix, B. The covariance matrix C is then calculated as

C = BTB, (8.1)

where C ∈ Rn×n.

c) Extracting Principal Components

By performing a symmetric eige-decomposition of C, we can compute a factorization
for C

C = QΛΛΛQT , (8.2)

whereΛΛΛ ∈ Rn×n is a matrix containing eigenvalues sorted from greatest to least, and
Q ∈ Rn×n is the matrix containing the corresponding eigenvectors along its column

https://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_04.html
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space. The eigenvectors correspond to the principal components of the image, while
the eigenvalues correspond to the variance of the projected data along the principal
component.

d) Data Projection

The key concept here is that certain spectral images can be reconstructed with high fi-
delity with just a few principal components. Select r number of principal components
with the highest variance. We want to choose the principal components that account
for large variances in the data, as these components account for higher-level features.
We can project our image data onto a lower-dimensional subspace occupied by these
principal components. To do this, construct a matrix R ∈ Rn×r with the r greatest
principal components along its column space. We can reconstruct the original image
from the low-dimensional subspace via the equation:

Anew = RRTBT + µ, (8.3)

where Anew ∈ Rw×h×n is our reconstructed image matrix and µ ∈ Rw×h×n is the
mean spectrum (that we subtracted from earlier). Choose a value of r that causes your
reconstructed image to look similar to the original image. Place your reconstructed
image, and report your chosen value for r .

2. Hyperspectral Images under Variable Lighting

Scenes around us are illuminated by different types of sources (e.g. the sun, halogen,
incandescent, fluorescent, etc.). Each of these sources have a different pre-known
spectral illumination profile. If we know the reflectance profile at every point in a scene,
then we can recreate an image of the scene under different illumination profiles by the
given analytic equation

l (λ) = r (λ) e (λ) (8.4)

where l(λ) is the observed spectral radiance at point P in the scene, r (λ) is the spectral
reflectance at P, and e (λ) is the spectral profile of the light incident on P. This model
assumes approximately uniform spectral illumination across all pixels in the scene, which
is often a reasonable assumption. This problem will give us insight into the usefulness
of knowing the spectral profile of a scene, particularly for image rendering.

a) Rendering a Hyperspectral Image

Choose any hyperspectral image from theManchesterHyperspectral ImageDatabase.
These images contain the reflectance spectrum of the scene at each pixel sampled at
33 wavelength bands from 400 nm to 720 nm with a step size of 10 nm Foster et al.
(2006).

b) Rendering Under Illumination Source

https://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_04.html
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Extract the spectral profile of at least two different illumination sources from the col-
orimetric data available at the International Commission on Illumination L’eclairage.
Ensure that the spectral profile is extracted at wavelength bands matching the hyper-
spectral image (400 nm - 720 nm with 10 nm step size). Using Eq. 8.4, determine
the spectral radiance l(λ). You can assume that the Manchester database Foster
et al. (2006) gives us information about r(λ) and the colorimetric database gives us
information about e(λ). Plot the observed radiance at point [2,3] in the image.

c) Producing an XYZ Image

l(λ) tells us what the spectral radiance looks like for a given point in the scene. This
contains all the information that we need to recreate a human-interpretable image
of a scene. Recall that the human eye has three cones, with L, M, and S cones
being sensitive to long, medium, and short wavelengths respectively. Our eyes (and
cameras via Bayer filters) process this light through these three color channels (red,
green, and blue). What each cone observes is given by

oi =
∫

si(λ)l(λ)dλ (8.5)

where oi is the scalar value that cone i will observe at a point P in the scene, l(λ) is
the spectrum of the light reaching our retina, si(λ) is the spectral sensitivity of cone
i, and i ∈ {R,G,B} .
Extract the spectral sensitivity for each of the three cones from the CIE database.
This database contains CIE’s 1931 color space sensitivity data, which is a quantita-
tive link between the electromagnetic wavelength of colors and their corresponding
physiologically perceived color in humans Smith and Guild (1931). Using the cor-
responding L, M, and S cones, produce an RGB image by merging the 3 separate
images.

d) Rendering into an RGB Image

The RGB color space is contained inside the XYZ space, and hence the values
of oi can be converted to RGB. You can use built-in functions in Python such
as “scikit.image.xyz2rgb” for the conversion, and to produce an RGB image.
Compare this image with another image under the same lighting. Do they look
similar?

http://files.cie.co.at/204.xls
http://files.cie.co.at/204.xls
http://files.cie.co.at/204.xls
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9 Programmable Illumination and Shading

In the previous two chapters, we discussed ways to leverage certain properties of light (i.e.,
spectrum and polarization) to obtain features of objects in a scene. In this chapter, we will
specifically focus on using intensity measurements for shape information and applications
in graphics and rendering.

9.1 Scene Reflectance and Photometry

9.1.1 Albedo, Radiance, Irradiance
Imaging, and our visual system, relies on information obtained from light reflected off of
objects in a scene. The field of optics has derived complex relationships between light
and surfaces, in the way that they interact through single or multiple absorption, reflection,
and scattering. However, modeling a scene strictly using these relationships is an often
impractical task, due to the complexity of a real scene (i.e., unknown optics, noise) and
the computational burdens it would impose, assuming we can derive a sufficiently complex
model. In practice, the dependence of the scene reflectance on angle and spectrum of
incident light cannot always be accounted for. Instead, some simplifying assumptions are
used, which in practice have yielded quite good results.

Over some spectral window, the reflectance is assumed to be constant. Meanwhile, the
angular dependence is simplified by the separation of the measured light into its diffuse
and specular albedo. Albedo is the proportion of incident light that is reflected, i.e., not
absorbed, by a surface. Note that due to its spectral and angular dependence, albedo is not
an intrinsic property of the surface. The specular component is light that directly bounces
off a surface to the sensor, while the diffuse component is light that scatters randomly
upon interacting with the surface. As discussed in Chapter 7, the diffuse component is
approximately isotropic, while the specular component is highly anisotropic. Decomposing
an image into just two components allows for a convenient representation of the albedo,
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while accounting for its dependence on the angle of incidence Coakley (2003). More
simplifying assumptions will be discussed in 10.1.2.

We now distinguish between two similar, but distinct, fields studying the measurement of
light. Radiometrymeasures the absolute power of the light, while photometry attempts to
mimic the radiant sensitivity of the human eye. Specifically, as discussed in Chapter 8, three
different cones in the retina have different spectral sensitivities, with peaks approximately
centered at red, green, and blue light. Photometry is more common in imaging, while
radiometry is more common for applications in astronomy, where a faithful measurement
of the spatial light intensity distribution is required. Radiometric quantities are typically
converted to photometric quantities by cameras due to the spectral sensitivity of color filter
arrays (e.g., Bayer filter) in front of the focal plane.

The irradiance E of a surface is defined as the incident radiant flux density, and has units
of W · m−2. Meanwhile, radiance L of a surface is emitted flux per unit of foreshortened
area (from Lambert’s Law) per unit solid angle W · m−2 · sr−1. Radiance in this context
is useful because it enables understanding of how much irradiance will be received by the
observer, depending on their view angle. For some incident flux Φi , we can denote the
irradiance as

E =
dΦi

dA
,

where dA is the incident area. For d2Φr flux radiated within a solid angle dωr , the surface
radiance is

L =
d2Φr

dA cos θrdωr
.

9.1.2 Lambert’s Law
A Lambertian surface is a surface that reflects light approximately equally across the
azimuth. It obeys Lambert’s Law, in which the intensity is proportional to cos θ, where θ
is the incident angle of illumination with respect to the surface normal. Assuming an ideal
point source, the law can be expressed as

I (θ) = I (0) cos θ,

where I (θ) is the light intensity reflected. The reflected light is maximum when the
incident light is parallel to the surface normal, and is zero when the source is orthogonal
to the surface normal. This reduction in intensity as the incident light deviates from the
surface normal is due to foreshortening. Foreshortening is a phenomena in which the
area of light incident on a surface decreases at oblique incident angles with respect to the
normal, reducing in an overall reduction in reflection, as shown in Fig. 9.1. Note that there
is no φ (azimuthal) dependence in Lambert’s Law. Any surface (typically diffuse) that
approximately behaves as such is referred to as Lambertian surface.
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Figure 9.1: Lambert’s Law and Foreshortening. When the incident light is at an angle with
respect to the normal, the area of light incident on the surface is reduced, in what is known
as foreshortening. This results in a reflected intensity proportional to the product of cos θi
and the incident intensity.

9.1.3 Bidirectional Reflectance Distribution Function
The ratio of the light incident on the surface and the irradiance measured by the observer
is known as bidirectional reflectance distribution function (BRDF). The BRDF is given by

f =
L
E

and is a function of 4 variables: θi , θr , φi , φr , where subscript i denotes incidence angles
and r denotes reflected angles. Given the BRDF for a surface, we can determine the
observed reflectance at some view angle as a function of incident angle.

The BRDF of an object can be empirically determined by densely measuring the reflectance
of the object Matusik (2003). However, there is value in understanding some analytical
BRDFs. Here are a few interesting, but fundamental, BRDF properties and ideas. The
Helmholtz Reciprocity states that, by the second Law of Thermodynamics, the appear-
ance of the object does not change when the viewing and source directions are swapped.
Mathematically, for any BRDF,

f (θi, φi; θr , φr ) = f (θr , φr ; θi, φi) .

Zickler et al. (2002) show that one can even exploit this reciprocity to constrain the solution
of the surface normals of an object, by surgically choosing the positions of the light sources
and camera. If an object exhibits rotational symmetry, then the BRDF becomes a function
of just three variables

f (θi, θr , φi − φr ) .
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If a reflection is mirror-like, or specular, then the BRDF becomes

f (θi, φi; θr , φr ) = ρsδ (θi − θr ) δ (φi + π − φr ) ,

where ρs is the specular albedo, and δ (x) is the impulse function. This shouldmake intuitive
sense, since θi = θr , as dictated by Snell’s Law for a specular reflection. Furthermore, the
reflected light should lie along the plane of incidence, meaning that φr = φi + π. Since
all the specularly reflected light is contained precisely along these angles, the viewer angle
must be aligned at θr = θi and φr = φi + π to detect a mirror-like reflection. Otherwise,
the viewer detects zero radiance. A depiction of this concept is shown in Fig. 9.2. Note,
however, that the double delta function is an idealized model. In practice, real surfaces
aren’t perfectly smooth, so the highlights occur over some small patch, rather than at a
single point. It is, however, still instructive to understand these idealized BRDF models.
One example of a BRDF accounting for specular reflections off of rough surfaces is the
Phong BRDF model. This model incorporates angular falloff of intensity into the idealized
model, by introducing a specular lobe, rather than specular spike, shown in Fig. 9.3 (Phong
(1975)).

Let’s consider the BRDF in the context of images taken in heavy snow conditions. In such
scenes, a “white-out” effect is dominant, in which it is nearly impossible to distinguish the
texture of the snow. Here’s why. The sky is the illumination source for these images, with
an approximately uniform radiance of Lsource (θi, φi) = Lsky. The reflected radiance is

Lsource (θr , φr ) =
∫
Ω

Lsource (θi, φi) f (θi, φi; θr , φr ) cos θidΩ,

=

∫ π

−π

∫ π/2

0
Lsky f (θi, φi; θr , φr ) cos θi sin θidθidφi,

where f (θi, φi; θr , φr ) is the BRDF for the snow, cos θi is the term resulting from Lambert’s
Law, and dΩ = sin θidθidφi is the differential solid angle. For a diffuse surface, where the
reflection is approximately isotropic, the BRDFwill be a constant value given by ρ/π, where
ρ is the albedo. Therefore, if we evaluate the above integral, we will get Lsurface = ρLsky.
The surface reflectance at any point in the scene is simply a uniformly scaled version of
the sky reflectance, which results in the uniform appearance of snow, and the “white-out”
effect.

9.2 Shape from Intensity

Shadows play an important role in human vision. Our two eyes enable binocular vision,
which is particularly useful for depth perception. However, even if we cover one eye, we
are able to perceive the shape of an object by observing its shading pattern. In computer
vision, you can leverage local shading to obtain a concise representation of physically
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Figure 9.2: Specular or Mirror-like Reflection of Light.

Figure 9.3: Phong BRDF Model for Specular Highlights.

Figure 9.4: Geometry of Image Projection. (a) Perspective Projection. (b) Orthographic
Projection.

plausible shapes of objects in a scene Xiong et al. (2014). In this section, we will explore
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Figure 9.5: Example of a Reflectance Map.

the fundamentals of shadow formation in the context of shape from intensity, a class of
problems dedicated to extracting shape via raw intensity measurements from an imaging
sensor. Note that the following sections serve as an introductory text. For a more rigorous
treatment of image illumination and shadow formation, the reader is directed to Horn
(1975).

9.2.1 Reflectance Maps and Gradient Space
A reflectance map maps a scene’s reflectance as a function of the spatial gradients of the
scene depth. It is particularly useful in understanding the image formation process, since
it is dependent on light source distribution and the shape of the object. Consider the object
shape in Fig. 9.4. The z axis lies along the direction connecting the camera to the object,
with the x and y axis parallel to the image plane. The z value gives us the depth for each
pixel. We can express the surface normals by

n̂ = (p,q,−1)√
p2 + q2 + 1

,

where p = ∂z/∂x and q = ∂z/∂y. For convenience, we assume that the camera is along
the −z direction. The reflectance map R (p,q) is therefore expressed in terms of the surface
gradients, and often plotted as a contour map in the p − q plane as shown in Fig. 9.5.
The (p,q) plane is known as gradient space, and is a convenient way to represent surface
orientation. A given point in gradient space refers to a specific surface orientation with
respect to the viewer. It is used in image analysis to relate the geometry of image projection
to the radiometry of image formation. Every point along a contour has the same reflectance.
The reader is referred to Horn and Sjoberg (1979) for details on how a reflectance map is
obtained.
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Figure 9.6: MappingMultiple Intensities to Surface Orientations Using a ReflectanceMap.

We can use a reflectancemap to determine surface orientation. For this shape reconstruction
task, there are two components: an offline job and an on-line job. The offline job consists of
building a reflectance map and constructing a lookup table to convert reflectance measure-
ments to surface normals, while the on-line job consists of measuring image intensities and
determining surface orientations from the lookup table Ikeuchi (1981). A reflectance map
provides us with a way to relate a fixed scene illumination, an object’s photometry, and the
imaging geometry together. However, this is insufficient for shape reconstruction since an
intensitymeasurement provides onemeasurement while surface orientation has two degrees
of orientation. Photometric stereo is useful because it adds another layer of information
that enables shape information. The basic imaging equation, given the reflectance map, is

Ij (x, y) = Rj (p,q, x, y) ,

where I (x, y) is the intensity output, or the image for a certain illumination j. The unknowns
are p and q, while I (x, y) is measured. Obtaining two images would constrain p and q,
but often the solutions are nonlinear equations, yielding multiple possible values of p
and q, which often makes it useful to have a third measurement. The benefit of using an
orthographic projection is that Rj (p,q, x, y) becomes only a function of p and q (Rj (p,q)),
due to the spatial invariance of the reflectance field in far-field. While a perspective
projection is a more accurate representation of the true geometry of image projection, an
orthographic projection is a useful mathematical simplification in far field (Fig. 9.4). The
orthographic projection also enables an easier measurement of the reflectance field. We
can then directly match the reflectances of a given pixel to a point in gradient space, which
we can then use to obtain the surface normal as given by (p,q,−1). Fig. 9.6 shows how
we can obtain the surface orientation by determining the intersection points of multiple
reflectance maps Ikeuchi (1981).
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(a) (b)

Figure 9.7: Photometric Stereo for Lambertian Surfaces. (a) Light from the illumination
source is incident on the object, with the source vector s known for each pixel. The light
reflected to the sensor is approximately independent of the sensor location, due to the
Lambertian approximation. (b) Multiple light spatially offset light sources are used in
photometric stereo, with a fixed camera position.

9.2.2 Calibrated Diffuse Photometric Stereo
Photometric Stereo is a technique that observes a scene under different illumination
conditions to extract the surface normals (and shape, by extension). Multiple illumination
sources are placed at different locations, while the camera is held in place. Note that this
differs from traditional stereo imaging, in which the scene is captured at different camera
positions. The increased information capacity provided by the location-dependent light
source constrains the possible surface normal orientations, and doesn’t require additional
image registration. Let us first consider the basic example of how we can use photometric
stereo cues to extract surface normals for Lambertian surfaces. Refer to Fig. 9.7 for the
image formation model. For each illumination source, we assume that we know the vector
s ∈ R3 for each pixel, containing information about the direction and intensity of the ray
for each pixel.

There are three key photometric angles to understand in photometric stereo. The incident
angle is the angle between the incident ray and the surface normal, view angle is the angle
between the reflected (i.e., observed) ray and the surface normal, and phase angle is the
angle between the incident and the reflected ray. A depiction of these angles are shown in
Fig. 9.8. Lambert’s Law, as described earlier, is an example of a reflectance model in terms
of the incident angle Woodham (1980).

If we have k illumination sources, for each pixel we will have a measured intensity vector
i ∈ Rk and a measurement matrix L ∈ R3×k containing the s vector for each illumination
source along its column space. Assuming the pixel has an albedo of ρ, we can then relate
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Figure 9.8: Important Photometric Angles: Incident Angle (i), View Angle (e), Phase
Angle (g).

the pixel’s surface normal n̂ to our known quantities by the matrix product

i = L�ñ′,

where ñ′ = ρn̂. For k = 3, we can easily invert and solve for n̂ and ρ, taking into account that
n̂ has length 1. We can also have k > 3, in which case the linear system is overconstrained
and the reconstruction will be more robust to noise. The reader is directed to Shi (2019);
Zheng et al. (2020); Satkin et al. (2012) for surveys on data-driven photometric stereo
methods. Choy et al. (2016) also present a network that uses shape priors coupled with
multi-view image data to map images to their 3D shape.

A subset of the photometric stereo problem is known as shape from shading (SfS), where
k = 1 and shading cues are used to obtain surface normals. This method is partly based
on human vision. Incident light reflected by a surface is generally only dependent on the
surface orientation with respect to the light source and the observer. Therefore, different
points on a nonplanar surface will reflect different intensities of light back to the observer.
This enables our brain to process these shadows and help us perceive shape through vision.

SfS is an underconstrained problem, so we have to make some assumptions to solve for the
normals. One possible constraint is to enforce smoothness of gradients via the optimization

min
∬

image

(
p2
x + p2

y

)
+
(
q2
x + q2

y

)
dx dy,

where px =
∂p
∂x , py =

∂q
∂y , qx =

∂q
∂x and qy =

∂q
∂y . Another possible constraint would be to

enforce the fidelity of the image intensity to the reflectance map, by the optimization

min
∬

image
[I (x, y) − R ( f ,g)]2 dx dy,
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where R (p,q) is the corresponding reflectance based on the normal at (x, y). A weighted
combination of these optimization constraints is also possible, along with others. For a
dedicated text on Shape from Shading, the reader is directed to Horn and Brooks (1989).
For more work on numerical SfS, the reader is encouraged to review Ikeuchi (1981), while
the reader is directed to Zhang et al. (1999) for a comparison of different SfS algorithms,
as well as code to implement them.

9.2.3 Uncalibrated Diffuse Photometric Stereo
The light source directions and intensities may not always be known, as we previously
assumed. In such a case, we would have to resort to numerical methods to approximate
our surface normal, even if we assume a Lambertian surface. Let’s consider an image data
matrix I ∈ Rp× f , where p is the number of pixels and f is the number of frames captured.
Based on the Lambertian constraint, we can express the image data as

I = RNMT,

where R ∈ Rp×p is the surface reflectance matrix (a diagonal matrix containing the albedo
of each pixel along its diagonal), N ∈ Rp×3 is the surface normal matrix (containing surface
normal vectors of each pixel along its row space), M ∈ R3× f is the light source direction
matrix (containing the light source direction along its column space), and T ∈ R f× f is the
light source intensity matrix (a diagonal matrix containing the light intensities along its
diagonal).

Using this formulation, we can express I as a matrix product I = SL, where S = RN is the
surface matrix and L = MT is the light source matrix. If there are at least three surface
normals in the image that do not lie in the same plane, then S will have three linearly
independent rows, and will therefore have rank 3. Similarly, if the three light source
directions do not lie in the same plane, L will have three linearly independent columns and
also have rank 3. These are both reasonable assumptions, so we can assume that I will
have rank 3 as well, provided our measurements are noiseless. If p � f , we can calculate a
singular value decomposition (SVD) for our measured intensity matrix I in the non-ideal
case with noise

I = UΣVH,

where U ∈ Rp× f , Σ ∈ R f× f , V ∈ R f× f , and U�U = V�V = VV� = E (where E is
the identity matrix). Σ contains the singular values of the matrix

(
σ1, · · · , σf

)
along its

diagonals, sorted from greatest to least such that σ1 � · · · � σf . Since our measured
intensities I are not noiseless, we assume the first 3 singular values are above the noise
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threshold, and decompose U, Σ, and V as shown.

U =
[

︸︷︷︸
3

U′

︸︷︷︸
f − 3

U′′
]
} p,

Σ =
[

Σ′ 0

︸︷︷︸
3

0
︸︷︷︸
f − 3

Σ′′

]
} 3
} f − 3

,

V =
[

V′

︸︷︷︸
f

V′′

]
} 3
} f − 3

.

We then approximate a new denoised version of I, given by Î, using the first three singular
values from SVD, to get a rank 3 intensity matrix Î.

Î = U′Σ′ (V′)H = ŜL̂,

where Ŝ = U′
(
± [Σ′]1/2

)
and L̂ =

(
± [Σ]1/2

)
(V′)H. Note that this approximation only

holds if the third singular value is much larger than the fourth singular value. The sign
ambiguity corresponds to ambiguity of the direction of the coordinate system. Without
loss of generality, we can choose the right-handed coordinate system, corresponding to +Σ.
Note that Î = ŜL̂ is not a unique factorization. For some arbitrary invertible matrix A,

Î =
(
ŜA

) (
A−1L̂

)
= ŜL̂.

Therefore, we must find the matrix A that will yield the correct surface and light matrices,
such that

S = ŜA,
L = A−1L̂.

To constrain the search for A, we search for at least 6 pixels in which the relative value of
the surface reflectance is constant or known a priori. We extract p′ � 6 pseudo vectors ŝ
from the row space of Ŝ that satisfy this condition. If all p′ pixels have the same reflectance,
then the following condition must hold:

ŝ�k AA�̂sk = r, k = 1, · · · , p′,

where r is the magnitude of the surface reflectance. If this value is unknown, we can simply
choose r = 1, since we are interested in relative surface reflectance. We first solve for
B = AA� via a straightforward system of linear equations. Using the SVD of B, we know
that B =WΠW�, since B is symmetric. We can then determine that A =W [Π]1/2. Once
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we solve for A, we can extract S and L using the above equations in terms of Ŝ and L̂. The
surface normals can be extracted by normalizing the magnitude of each row in S to be 1.
The normalization factor is the albedo for that pixel. Note that the normals are represented
in an arbitrary coordinate system. Once the surface normal of one pixel is determined with
respect to the observer, the remaining surface normals can easily be determined via linear
transformation Hayakawa (1994).

Another way to determine A is by taking advantage of the integrability constraint. From
introductory multivariable calculus, we know that ∂

∂x

(
∂z
∂y

)
= ∂

∂y

(
∂z
∂x

)
. Recall that Ŝ is a

p × 3 matrix, containing “pseudo-normals” along its row space. Using the integrability
constraint, we can set up a linear system of equations based on the derivatives of the normal
vectors. This linear system of equations can be solved using linear least squares, tominimize(

∂z
∂y∂x − ∂z

∂x∂y

)2
at each pixel. For more information on this integrability constraint, the

reader is directed to Basri et al. (2007). These methods provide us with a useful numerical
method to extract shape information from multi-illumination when we don’t have prior
knowledge of the source direction or intensity, and the surface albedos.

9.2.4 Dichromatic Reflection Model
As we discussed in Chapter 7, the highlights present in an image caused by specular
reflections can often be distracting and affect computer vision tasks, including surface
normal extraction. Photometric stereo is one way to deal with the specular reflections from
glossy surfaces. We will consider the case of images with purely specular reflections, since
only 1 − 2% of the reflections from metals are diffuse. This means that the Lambertian
assumption doesn’t work well here. For specular objects, we can also no longer illuminate
the scene with point sources, as we assumed before. Due to the single bounce nature of
specular reflections, only surfaces oriented in a specific direction will reach the observer’s
eye. Therefore, the observer will simply see virtual images of the point sources. Instead,
we must use an extended light source, which can be obtained by uneven illumination off
of a diffusely reflecting planar surface. An extended light source can also be thought of as
a series of multiple point sources.

Shadows cast by external objects can also negatively impact the performance of photometric
stereo in shape analysis. While reflectance properties of the object are illumination-
independent, the surface relief is highly illumination-dependent and produces shadows
depending on the location of the illumination. Ultimately, we want to be able to obtain
an illumination-independent 3D characterization of shapes in a scene using 2D images.
Note that both highlights and shadows are simply sudden, unexpected changes in pixel
intensities. The only difference is shadows are darker pixels, while highlights are brighter
pixels.
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We can handle challenges presented by external shadows and highlights by incorporating
a dichromatic reflection model, in which the reflectance can be decomposed into a sum
of a Lambertian and specular component. The Lambertian components can be dealt with
similar to how we discussed previously. Meanwhile, we can detect specular components
using spectral cues. Capturing an ordinary RGB image contains redundant information
across channels, since the three color channels are linearly dependent. Instead, we can
use a photometric stereo approach, where we illuminate the scene from different angles,
with each angle containing a different spectral source. This is known as shape from color.
Note, however, that the spectral sources may have different intensities and will need spectral
calibration accordingly. As discussed in Chapter 8, the intensity measured by a sensor α is
given by

Iα = cos θ
∞∫

−∞

µ ε (λ) R (λ)Qα (λ) dλ,

where θ is the angle between the source direction and the normal, µ is a constant proportional
to the strength of the light intensity, ε (λ) is the spectral distribution of the illumination
source, R (λ) is the reflectance at the pixel location, and Qα (λ) is the spectral sensitivity of
α. We will first describe the process of color photometric stereo.

Recall that we can compactly express the intensity of a grayscale pixel in an image of a
Lambertian object as

I0 = ρLn,

where I0 is the intensity vector for light from three different directions L = [L1, L2, L3]�
and n is the surface normal for the pixel. In color photometric stereo, assuming a surface
patch has color C =

[
Cr ,Cg,Cb

]� and we use an RGB camera capturing intensities Ik , we
can model the intensity for each pixel from illumination source k as

Ik =
[
Ik1 , I

k
2 , I

k
3
]�
= skC,

where sk = 〈Lk,n〉 and S =
(
s1, s2, s3)� is the shading vector. Note that Cα =

∞∫
−∞
ε (λ) R (λ)Qα (λ) dλ, as alluded to earlier. If we combine the intensities for all 3 il-

lumination sources, such that [I] =
[
I1, I2, I3]�, we can express [I] as

[I] =



I1
1 I1

2 I1
3

I2
1 I2

2 I2
3

I3
1 I3

2 I3
3


=



s1Cr s1Cg s1Cb

s2Cr s2Cg s2Cb

s3Cr s3Cg s3Cb


= SC�.

Each row of [I] is a different illumination, and each column is a different color. Note that [I]
refers to measurements at one pixel, for 3 colors and 3 illumination directions. For a diffuse
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surface, the intensity vectors measured by each illumination source are linearly dependent,
so they are all collinear in RGB space. In other words, these intensity measurements are
scalar multiples (sk) of each other. Noise in measurements may perturb this collinearity
in RGB space. By applying principal components analysis (PCA) (discussed in detail in
8.4.2) on [I], we can determine the principal direction, which gives the chromaticity of the
object. The principal direction is simply the principal component with largest variance.
Each measured intensity in [I], which is in color space, is then projected onto this principal
direction, to give us a new intensity measurement [I′]. C is simply the normalized unit
vector along the direction of the principal direction, and S can be extracted by the known
value of C and [I′] by solving the linear system. Once S is determined, n can be recovered
using standard grayscale photometric stereo.

This technique of color photometric stereo, however, will also falter under the presence of
specular highlights. Assuming that there are no self-shadows, we can use four illuminations,
and extract the albedos for each image separately using grayscale photometric stereo. If the
albedos are significantly different, then the pixel has a specular highlight. In this case, the
illumination with the smallest albedo is assumed to contain only the Lambertian constraint
and used for surface normal recovery. Let’s now formalize this physical intuition with
mathematical definitions.

We will examine a method known as 4-source color photometric stereo. In this method,
we will capture four different illuminations, instead of 3 as we normally do with Lambertian
surfaces. Since we capture four images in 3D space, we will have 4 linearly dependent
images. Therefore, for some vector a = [a1,a2,a3,a4]�, a Lambertian surface will satisfy

〈a, I〉 = a1I1 + a2I2 + a3I3 + a4I4 = 0.

However, for specular highlights, the value will deviate from 0 by some factor ε . By
thresholding this value for ε , we can identify specular regions. Then, we can interpolate
specular regions based on neighboring pixels. For more details on how the normals are
extracted from this point on, we direct the reader to Barsky and Petrou (2003). The reader
is also welcome to study Esteban et al. (2008) for use on how traditional stereo imaging
can be combined with photometric stereo to extract shape from textureless, shiny objects.

9.2.5 Shape from Interreflections
In our idealized models so far, we assume that the light intensity measured at the sensor
is light that propagates from the source, bounces off the surface, and directly reaches the
sensor. This assumption generally works well for convex surfaces, in which no two points
on a surface or visible to each other. However, for concave surfaces, the light will go
through several interreflections before reaching the sensor, in which the light bounces off
one point on a surface to another point, and repeats for a certain number of times before



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

9.2 Shape from Intensity 327

Figure 9.9: Scene Interreflections. The most idealized model is the single bounce model,
in which light from the source bounces off the surface and directly reaches the sensor.
However, the light can bounce off of the surface n times, as shown for two-bounce reflection
and a three-bounce reflection. The total intensity measured at the sensor is the sum of the
intensities for all possible number of bounces, from 1 to infinity Seitz et al. (2005).

Figure 9.10: Concave Shape Reconstruction Using Photometric Stereo. (a) Original shape.
(b) Shape reconstructed with standard photometric stereo Nayar et al. (1991).

reaching the sensor. A comparison of the idealized image formation model and models
containing interreflections is depicted in Fig. 9.9.

Neglecting the effects of interreflections often results in incorrect image renderings. Refer
to Fig. 9.10 for an example of the poor reconstruction yielded by photometric stereo for a
concave surface. In computer vision, it is desirable to remove the effects of interreflections
to properly render an image with color constancy. Color constancy is the ability of an
object to be approximately the same color under different illumination conditions. With
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Figure 9.11: Direct and Indirect Illumination of Surface Points.

interreflections, there are two known problems: the forward and inverse problem. The
forward, or graphics, problem deals with trying to determine image intensity values from
shape and reflectance information. The inverse, or vision, problem seeks to extract the shape
and reflectance from intensity measurements. Often, inverse problems are challenging due
to the non-linearity of the forward model. Shi et al. (2013) present an example of a
parametric bi-polynomial forward model for single reflections that is suitable for inverse
problems.

The vision problem for interreflections is non-trivial, due to interdependency between
shape and interreflections. It resembles a “chicken and egg” problem, in which modeling
interreflections requires prior knowledge of shape and reflectance, but our goal is already to
determine the shape. However, assuming we work with Lambertian surfaces with contin-
uous shape, we can extract “pseudo shapes” using standard photometric stereo techniques,
and use those as a prior to understand interreflections in an object. These pseudo shapes
can then be corrected to yield the actual shape of the object.

The pseudo shape of the object has certain interesting properties that we can exploit. The
pseudo shape is unique for a given shape, and is less concave than the actual shape. We
now describe an interreflection model based on the forward problem. To be able to obtain
a closed-form solution, we assume that all surfaces in the scene are Lambertian, but can
have spatially varying albedos. Consider the concave surface in Fig. 9.11a. Notice how the



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

9.2 Shape from Intensity 329

measured intensity from a given point on the surface is a superposition of direct illumination
by the source and illumination from other points on the surface, seen in Fig. 9.11b.

We want to determine the radiance of point x caused by point x′, and we do so via a
visibility function. The visibility function determines if two points are able to “see each
other”, and is defined as

V (x,x′) =
〈
〈n, (−r)〉 + |〈n, (−r)〉|

2 |〈n, (−r)〉| ,
〈n′,r〉 + |〈n′,r〉|

2 |〈n′,r〉|

〉
.

Note that V (x,x′) is a binary function, with 1 meaning that the two points are oriented such
that they can illuminate each other, and 0 meaning that they are not. We let dEm (x,x′)
represent the irradiance of the surface element due to the radiance L (x′) from element dx′,
as shown in Fig. 9.11b. Using the geometry in Fig. 9.11b, we can determine that

dEm (x,x′) =
[ 〈n, (−r)〉〈n′,r〉V (x,x′)

〈r,r〉2

]
L (x′dx′) .

Since we assume a Lambertian surface, we can model the radiance of dx due to dx′ as

dLm (x,x′) = ρ (x)
π

dEm (x,x′) .

Recall from the “white-out” idea that the BRDF of a Lambertian surface is given by ρ/π.
Meanwhile, the irradiance of the point due to a point source can be modeled as

Ls (x) =
ρ (x)
π

Es (x) ,

where Es (x) = k 〈n, s〉, analogous to what was mentioned in discussions of Lambert’s Law
and diffuse surfaces. The total radiance at a point is then expressed as

L (x) = Ls (x) +
∫

dLm (x,x′) ,

where the integration is done across the surface. This equation for the forward model
is referred to as the interreflection equation. While it is rather difficult to solve the
integral equation, approximating a uniform reflectance ρ (x) = ρ would enable an iterative
solution by the Neumann series. Another possible method is by discretizing the surface
into facets. Both these methods are out of scope for this text. Solutions to this integral form
are somewhat analogous to ray-tracing in computer graphics. The forward interreflection
model is used in an iterative manner as shown in Fig. 9.12 to obtain the correct facets, which
are simply discretized regions on the surface. The algorithm starts by estimating facets
using traditional shape from intensity measurements. Using the properties of the pseudo
surfaces described above, the algorithm is able to make adjustments to the facets, based on
the forward model, that eventually converge to the ground truth Nayar et al. (1991).
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Figure 9.12: Iterative Algorithm For Extracting Shape from Objects With Interreflections
Nayar et al. (1991).

9.2.6 Example-Based Photometric Stereo
Orientation consistency is a useful cue for interpreting scenes with arbitrary reflectance
profiles. Orientation consistency is based on the premise that any two points with the same
surface orientation must have a similar appearance in image, provided they are under the
right conditions. In other words, two surfaces with the same orientation reflect the same
amount of light back to the observer. This assumption holds when the BRDF of both points
are the same, the light sources are directional, the camera is orthographic, and there are no
shadows or interreflection effects unaccounted for by the BRDF. Orientation consistency is
particularly useful because if we know the surface orientation of some parts of a scene, we
can infer the orientations of other points in a scene.

We leverage orientation consistency by matching a reference object to the imaged object, in
what is known as example-based photometric stereo. By capturing several images with
different illuminations, we can enforce orientation-consistency across all images, using the
fact that orientation consistency is independent of illumination direction. Per color channel,
n reference images Vr =

[
Ir1, · · · , Irn

]� and n target images Vt =
[
It1, · · · , Itn

]� are captured.
The best matching reference point can be determined by finding the pixel in the reference
object that minimizes the �1 norm

��Vr − Vt
�� across all color channels and images. Note

that any object shape can be used for the reference, provided that the shape is known and
it has a sufficient distribution of surface orientations. The reference images contain known
surface orientations. We then match the intensities of the target image to the reference and
extract the surface orientation from the reference image.
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We now generalize this method of example-based photometric stereo to spatially variant
BRDFs. Assuming we have a homogeneous diffuse reference object, we can use a uniform
albedo constant described in the Lambert’s Law earlier. For a given pixel p in the target
object corresponding to pixel q in the reference object, we must account for the differences
in albedo. We do so by

Vt
p =
ρtp

ρr
Vr
q .

This relationship arises out of Lambert’s Law, as discussed earlier. Once this albedo
calibration is done, the pixel correspondence for orientation can be done as described
above. Now, we consider surfaces composed of multiple materials. A common technique
is to assume that all materials can be approximated by a linear combination of k basis
fundamental materials, which can be accounted for in k homogeneous reference images.
The intensity of the target image can therefore be expressed as

Itp =
k∑
i=1
ρti,pfi

(
np, ν, L

)
,

where fi
(
np,ν,L

)
is the reflectance map, np is the surface normal at pixel p, ν is the

direction to the viewer, and L is the incident illumination. Each material also has its own
albedo ρti,p . Each of the reference images Vr =

[
Ir1, · · · , Irn

]� can be expressed in a similar
manner. If we have k linearly independent reference observation vectors

[
Vr1

q , · · · ,Vrk
q

]
,

then they form a k-dimensional subspace. Therefore, we can express a pixel in the target
image Vt

p as a linear combination of a corresponding pixel in Vr

Vt
p =

k∑
j=1

mj ,pVrj
q ,

where mj ,p is the material index for point p. We can express this concisely as a matrix
multiplication by stacking the reference observation vectors into a single matrix Wq =[
Vr1
q , · · · ,Vrk

q

]
Vt

p =Wqmp .

Note that mp will differ for each color channel. A point p on the target image is considered
orientation-consistent with a point q in the reference images if there exists amp that satisfies
the above matrix multiplication. The candidate q is chosen by minimizing

��Wqmp − Vt
p

��2
2 .

Note that this could also also work well for Lambertian surfaces, at the expense of run
time and potentially more captured images. Recall that Lambertian surfaces only require 3
different illuminations to constrain the reconstruction Hertzmann and Seitz (2005).
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It is, however, desirable to be able to perform this generalized shape estimation without
an example-based approach. If we know the BRDF of an object, photometric stereo
methods would enable shape reconstruction as described previously using example-based
approaches. If shape is known, then some BRDF estimation methods can be applied to
estimate the material properties of the scene. However, if both the material and the shape
are unknown, the problem becomes more challenging, due to the high dimensionality of
the optimization space.

As mentioned earlier, we can leverage the fact that most objects, manmade or natural, can
be decomposed into approximately just two materials. Using this constraint, it is possible
to alternate between optimizing global parameters and optimizing per-pixel weights and
normals. Then, using an isotropicWard BRDFmodel, the normals and material weights for
each pixel can be jointly optimized. For more details on this optimization process, we refer
the reader to Goldman et al. (2009). The reader is also welcome to study Shi et al. (2016)
for more work on non-Lambertian photometric stereo and Ackermann and Goesele (2015)
for more information on photometric techniques and research challenges not discussed in
this text.

9.3 Multiplexed Illumination

We discussed in Chapter 8 the concept of multiplexed illumination in the context of
spectral imaging, in which we illuminated a scene with sources of different spectral profiles
to efficiently capture the spectral signature of a scene. In a similar spirit, we consider
scenes simultaneously, rather than sequentially, illuminated by multiple sources to improve
the dynamic range of the image (by appropriately dealing with specularity and shadows).
Methods related to multiplexing make note of the fact that specular highlights are often
concentrated in small image regions, shadows and dark albedos typically coexist with bright
albedos, and that low power illuminations may not yield good reconstructions.

Let us consider a multiplexed illumination setup with 3 sources, and denote the acquired
image as a =

[
a1,2,a2,3,a1,3

]�, where the subscripts denote which lights are on, and the
image irradiance under each illumination source separately as i = [i1, i2, i3]�. In the trivial
case depicted in Fig. 9.13a, we can approximate î = [i1, i2, i3]�. Based on the scheme shown
in Fig. 9.13b, we can determine at a pixel that a (x, y) =Wi (x, y) or



a1,2

a2,3

a1,3


=



1 1 0
0 1 1
1 0 1





i1
i2
i3


,

where W is a weighting matrix for the intensities i. This can be generalized to n light
sources and n measurements. The rows of W correspond to a measurement and contain
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Figure 9.13: (a) Standard Photometric Stereo (b) Multiplexed Illumination Schechner et al.
(2007).

binary values indicating whether a source is turned on or not. The estimate for î in this
case can be obtained by matrix inversion. The key benefit of the scheme in Fig. 9.13b
compared to that in Fig. 9.13a is that using multiple sources of illumination raises the
diffuse intensity relative to the specular intensity and illuminates shadows, which increases
the dynamic range. The spatially offset illumination ensures that the specular components
will not oversaturate, while increasing the brightness of the rest of the image Schechner
et al. (2007). Note that this is not necessarily a method for shape estimation, but still a
useful way to robustly remove noise, specularities, and shadows in dimly lit environments.
Caorsi et al. (1994) also present an interesting approach for multi-illumination inmicrowave
imaging.

9.4 Applications in Graphics

9.4.1 Light Stage
The light stage is a fixed mechanical stage with several light sources at angular offsets, or
with a single light source that can be manually moved around at fixed angular positions.
Examples are shown in Fig. 9.14. It enables capture of the reflectance field of a scene
using a dense set of image measurements, captured at various illumination angles Masselus
et al. (2002). Being able to capture real-world scenes and render them as 3D computer
models is useful for analysis of artifacts at archaeological sites. Standard methods for doing
so, such as laser scanning, while often effective, struggle under complex materials that
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(a)
(b)

Figure 9.14: Light Stage. (a) Light Stage With a Movable Arm Masselus et al. (2002). (b)
Light Stage Based on Several Spatially Offset Light Sources Hawkins et al. (2001).

exhibit anisotropic or iridescent reflectance, self-shadows, or high specularity. To capture
the scene with high fidelity, we can use a light stage to capture a dense set of reflectance
field measurements. Note that a light stage is especially useful here, since a 3D model
requires that we obtain accurate shape information and detail at any given angle. Nam et al.
(2016) uses this multi-illumination idea at a smaller scale, building a microscope imager
that captures microscale reflectance and surface normal information. The capture of the
reflectance field also eliminates the need for prior knowledge of the scene geometry. The
disadvantage is that it requires on the order of thousands of images, making them highly
data intensive Hawkins et al. (2001).

9.4.2 Image Rendering and Relighting
It is often desirable to also be able to render a scene under different lighting conditions,
particularly for graphics applications. Image relighting may be possible if we can obtain the
BRDF for every pixel in a scene. With this information, we can determine the reflectance
profile at every pixel in the scene for some arbitrary illumination, using the per-pixel BRDF.
However, this information may not always be readily available with high accuracy, and it
requires prior knowledge of the geometry of the object. We will consider some multi-
illumination methods to relight a scene, using multiple images with varying illumination.

One way to perform image based relighting of real objects is by using 4D incident light
fields. Recall that a light field is a 4D function that describes the illumination intensity
leaving some 3D volume. They are mainly used in image-based rendering for displaying
objects without knowledge of the scene geometry or material properties. To relight an
image using a 4D incident light, we need to be able to characterize the scene from any
incident illumination. The reflectance field is obtained by capturing the object under m
basis incident light fields. These are later used for relighting, since any future lighting
schematic can be expressed as a linear combination of the basis light fields. The total
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Figure 9.15: The coordinate system is defined such that a hemisphere completely contains
the object of interest Masselus et al. (2003).

reflectance field is simply a linear combination of the individual basis reflectances. This is
possible due to the linear nature of the illumination’s interaction with objects.

For such an illumination setup, we define a coordinate system such that the object is
completely contained by a hemisphere as shown in Fig. 9.15. The object is located at angle(
φp, θp

)
while the illumination direction is parameterized in a local frame given by (φa, θa).

We denote these parameters as Θ =
(
φp, θp, φa, θa

)
an Ω as the 4D space occupied by all

values of Θ. We aim to separate Ω into N partitions such that the union of these partitions
completely occupies Ω. Once we do so, we can express any incident light field as

Lincident (Θ) ≈
N∑
i=1

liBi (Θ) ,

where Bi (Θ) is a binary function determining whether Θ ∈ Ωi and li is the light field
emanating from the space occupied by Ωi . We can illuminate an object with different light
fields using a projector and occluders as shown in Fig. 9.16. The projector is mounted in
place, while the object, the camera, and occluders are moved around using a turntable, en-
abling capture of the scene at different points with respect to the azimuth. The illumination
is controlled with respect to the tilt angle by using the occluder. The object is then relit
simply using a linear combination of the measured basis reflectances

Lexitant (x, y) =
N∑
i=1

liRi (x, y) ,

where Ri (x, y) =
∫
Ωi

R (Θ, x, y) dµ (Θ) and R (Θ, x, y) is the reflectance field of the scene
Masselus et al. (2003).
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Figure 9.16: Relighting Based on discretized 4D Light Fields Masselus et al. (2003).

9.4.3 Local Shading Adaptation
If we can relight an image, we can also think about how we can increase the visual quality
of an image by enhancing shape and surface details via shadows. We should understand the
goal of illustrators and photographers is often not necessarily to depict physically accurate
lighting, but to convey the shape and form of a scene. A real scene, as we have discussed,
contains over- and under-exposed pixels, shadows, and specular highlights. The principle
of local shading adaptation is the idea that artists can increase local contrast in images
and bring out fine shape details by manipulating shading. They can do so while ensuring
that there are no sudden changes in intensity, keeping the dynamic range of the image high.
We can leverage this idea by using multiple images illuminated from different angles. Each
image will capture some features, which can be extracted via a multiscale edge-preserving
decomposition using a bilateral filter. These features can then be recombined in a way to
enhance the visual quality of the image. Note, however, that this may not necessarily yield
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a physically possible image. The intention is to convey features of the object, more so than
the true optical nature of the scene.

The bilateral filter aims to decompose an image into a filtered image Ij , preserving the
edges in the image, and a detail image Dj . Each filtered image can then be filtered again
repeatedly m times to obtain an m-level decomposition of the image such that

I =
m∑
j=1

Dj + Im,

where Dj = Ij−1 − Ij , Ij is a bilateral filtered image preserving the strongest edges in the
image and Dj is a detail image containing smaller changes in intensity. The final enhanced
image can be generated by

Iresult = Idetail + β · Ibase.

Idetail is aweighted sumof the difference imageD(i, j), where i corresponds to the image and j
corresponds to the scale. Simply put, Idetail maximizes the detail at each scale j by choosing
the value of D(i, j) from image i that maximizes the detail at j. Ibase is the base image,
containing the coarsest level of shading information and contains high-level detail of the
image. β is a scaling factor used to balance the tradeoff between the emphasis of the detail
and the base image. For details on how the decomposition is performed and how individual
images are extracted, the reader is directed to Fattal et al. (2007). Note that even illustrators
and photographers unfamiliar with the algorithm can still take advantage of visual shading
effects by straightforward manipulation of β. This is a good example of how multiple
images provide us with object features that can be easily extracted using numerical, rather
than physics-based, models. Akers et al. (2003) also demonstrate an interactive easy-to-use
application based on a weighted sum of multiple images for improved visual appeal.

Chapter Appendix: Notations

Notation Description

E Irradiance

L Radiance

{Φi ,Φr } Incident and radiated flux, respectively

(θi , θr ) Incident and reflected zenith angles

(φi , φr ) Incident and reflected azimuth angles

f (θi , θr , φi , φr ) Bidirectional reflectance distribution function (BRDF)

δ (x) Dirac delta distribution/function

ρs Specular albedo
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px Shorthand derivative notation of
∂p

∂x

n̂ Surface normals

(p, q) Gradient space

R (p, q) Reflectance map

i Measured intensity vector

L Measurement matrix

I Image data matrix

R Surface reflectance matrix

N Surface normal matrix

M Light source direction matrix

T Light source intensity matrix

S Surface matrix

Iα Intensity measured by a sensor α

ε (λ) Spectral distribution of the illumination source

Qα (λ) Spectral sensitivity of sensor α

〈x, y〉 Inner product between vectors x and y
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Exercises

The goal of this problem set is to reconstruct the shape of an object by observing it under
varied lighting conditions. There are many different methods to reconstruct the shape of an
object, including Shape-from-Polarization (SfP), stereo vision, and time-of-flight imaging
(via depth maps). In this problem set, we will explore the fundamentals of photometric
stereo, a subset of shape-from-intensity.

(a) Object of Interest. (b) Computed Normal Map.

Figure 9.1: By observing an object under different lighting conditions, we can extract the
surface normals of the object, which are used as a proxy for local shape.

1. Experimental Component

In this section, we will capture the image data needed to perform photometric stereo
analysis. First, choose some object in your house that you would like to obtain the
surface normals for. You will find the best results with objects that are

• approximately Lambertian (i.e. no glossy surfaces),
• convex in shape,
• homogeneous in material composition.

This is because the algorithms we work with in this problem set don’t account for
specular reflections, interreflections, or spatially varying BRDFs. In addition, we will
need
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1. a specular chrome sphere ball,

2. 4 approximately point light sources (or 1 movable point source),

3. a fixed camera.

a) Optical Setup

Place your object in front of a uniformwhite background. Your 4 light sources should
be placed around the object such that 3 source vectors are not coplanar, as shown in
Fig. 9.2. The source vector is the line connecting the origin to the light source, where
the origin is defined as the center of the object. To approximate a point source, place
your sources far away from the object. This also enables us to approximate a uniform
incident lighting direction across all pixels. If you use 1 movable light source, be
sure that you can move the source back and forth between the four locations with high
precision. Eliminate all sources of light in the room, except for the lighting sources
used in the imaging apparatus. Keep your camera in a fixed location such that it is
directly aligned to the front of the object. The line connecting the camera and the
object will be defined as the z axis, while the x-y plane is orthogonal to it. This
experiment assumes an orthographic projection model.

Figure 9.2: Insert an image of your optical setup (replace our example).

b) Capturing Images

Place your object in front of the camera. Keep the object and camera in place.
Capture the four images, with each image corresponding to the lighting of one of the
four sources. Keep track of which lighting direction corresponds to which image.
Replace your object with a specular sphere, and repeat the image capture process.
You should get a total of 8 images that look something similar to Fig. 9.3.

2. Photometric Stereo with Known Lighting Directions

a) Obtaining Lighting Directions



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

Exercises 341

We will first use the specular sphere images to obtain vector representations of our
four lighting directions (which are unknown at the moment). We do so by leveraging
the known geometry of the sphere (i.e. known surface normals) and the known
geometry of specular light reflection. You will use Python for the remainder of this
assignment. Be sure to convert any RGB images to gray-scale images.

i. Detecting Specular Sphere

Write a function that detects the edge of the specular sphere within each image.
Then, draw a circle outlining the specular sphere. Note that the outline you obtain
should be the same for all four images, since the camera is held in place. Keep
in mind that the quality of your specular sphere data will affect your function’s
efficacy. For credit, place the image of an outlined specular sphere in the box
below (replace our example).

[Hint: Use the Circle Hough Transform to detect the specular sphere]

ii. Detecting Point of Specularity on the Sphere

Assuming a point light source, there should be a small region on the sphere where
incident light is directly reflected back to the viewer. Your goal is to write a
function that detects this point of specularity. This point should be the pixel with
maximum intensity within the sphere. We first blur the image, before attempting
to detect bright pixels. This is so that outlier pixels don’t affect your algorithm.
Then, we find the brightest and largest region within the sphere, and average the
pixel locations within that region to obtain a point (x, y) in the 2D image.

iii.Calculating the Lighting Direction

The point of specularity corresponds to the point where light mostly behaves
according to Snell’s Reflection Law, from the viewer’s perspective. The geometry
of Snell’s Law allows us to compute the lighting direction. The normal vector N
at a point (x, y, z) on the surface of a sphere is given by

N =
1√

x2 + y2 + z2
(x, y, z) (9.1)

Recall that a point (x, y, z) on the surface of a sphere with center (x′, y′,0) and
radius r is parametrized by

(x − x ′)2 + (y − y′)2 + z2 = r2. (9.2)

Since we have already determined the x and y coordinates, we can easily solve for
the z coordinate as well. Now, using the law of reflection, we can determine the
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light source direction L as

L = 2(N · R)N − R (9.3)

where R = (0,0,1) is the viewing direction Debevec (2008). You should scale
your L vector such that it’s magnitude is the power of the lighting source. If this
is unknown, assume unitary power.

b) Obtaining Surface Normals

Recall that for Lambertian surfaces, we can approximate the intensity of a single pixel
as

I = ρρρLT n̂, (9.4)

where I ∈ R4 is the intensity vector containing the measured intensities from the four
sources, L ∈ R3×4 is the illumination direction matrix containing the light source
directions in its column space, n̂ ∈ R3 is the surface normal at that pixel, and ρ is the
albedo.

For an entire image containing p pixels, we can generalize this expression as

I = LT N̂, (9.5)

where I ∈ R4×p and N̂ ∈ R3×p . This equation resembles a least squares problem,
so we can obtain the surface normals by using the pseudoinverse of LT Woodham
(1980).

N̂ = (LLT )−1LI (9.6)

Note that the obtained normals will have to be scaled appropriately to have unit
length. The scaling factor for each normal describes the albedo.

c) Plotting Normal Map

Since the normals for each pixel have unit length, the values of each x, y, and z com-
ponents will lie between [−1,1]. Most plotting software accept either floats between
[0,1] or integers between [0,255]. Thus, for plotting purposes, we will rescale them
to be between [0,1] by adding one to every coordinate value and dividing by 2. In
the plotted RGB image, red corresponds to the +x direction, green corresponds to the
+y direction, and blue corresponds to the +z direction.

d) Error Analysis

For data we capture ourselves, we do not have ground truth surface normals to
compare to. If we did have ground truth normals, we could determine the mean
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angular value (MAE) by calculating the pixel-wise average of the angles between the
reconstructed normals and the ground truth normals (via dot product). Instead, we
will reconstruct the shading images based on the computed surface normals. We can
then compare these reconstructed shading images to the original shading images to
determine the mean and median error. To reconstruct a shading image, we use the
linear relationship from Lambert’s Law in Fig. 9.5 to solve for the intensity matrix
Î. Reconstruct all 4 shading images and determine the mean and median absolute
difference between the pixels, across all 4 images. Be sure to scale the errors by the
maximum pixel value (e.g. 1 on a [0,1] scale or 255 on a [0,255] scale). Note that the
background pixels should be masked out. For credit, place a reconstructed shading
image in the box below (replace our example). Additionally, include the mean and
median errors in the box below.

3. Photometric Stereo with Unknown Lighting Directions

Now we will consider the case in which we don’t have the lighting directions readily
available. Wewill instead use amatrix factorization approach to decompose our intensity
data into surface normals and lighting directions, as predicted by Lambert’s Law.

Please Note:

1. The algorithm has a large time complexity which scales up with the resolution of the
image.

2. The algorithm requires a prior knowledge of the surface normal of three points on the
image. Specifically, each of these three points should have normals approximating (1,
0, 0), (0, 1, 0), (0, 0, 1). Ensure that you choose an object that allows you to provide
these coordinates.

Provided you have taken these factors into account, you can reuse the same images from
the previous section (except we won’t use the specular sphere images).

a) Factorization of Intensity Matrix

Recall that we can express the intensity matrix I ∈ Rp× f of a scene with p pixels and
f frames ( f = 4 in our case) as

I = RNMT, (9.7)

where R ∈ Rp×p is the surface reflectance matrix, N ∈ Rp×3 is the surface normal
matrix, M ∈ R3× f is the light source direction matrix, and T ∈ R f× f is the light
intensity matrix. This can also be expressed as a simple factorization

I = SL, (9.8)
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where S = RN is the surface matrix and L =MT is the light source matrix Hayakawa
(1994). Our simplified objective, therefore, is to find the correct factorization of I.

i. Singular Value Decomposition

Singular value decomposition (SVD) is particularly useful because it organizes the
intensity data into its singular vectors and corresponding singular values, which
we will exploit shortly. First, flatten each image into vectors and create I by
concatenating these vectors column-wise. We will now decompose I using SVD.
Python should have libraries to help you extract the SVD of a matrix, such that

I = UΣΣΣV (9.9)

where U ∈ Rp×p , ΣΣΣ ∈ Rp× f , and V ∈ R f× f . Note that calculating the SVD can
be computationally expensive. You may need to downsample your images so the
algorithm executes in a reasonable time.

ii. Denoising the Image

We inherently assume that there is some noise in our image data. The singular
values we obtain from SVD are a measure of how much of the total variance in
the data is captured by the corresponding singular vectors. We assume that the
first three singular vectors are all tied to the image formation process, while all
subsequent singular vectors are the result of noise introduced into themeasurement
process. Therefore, we keep the singular vectors having the three greatest singular
values, and drop the remaining vectors. We now approximate our "true" intensities
as

Î = U′ΣΣΣ′V′ = ŜL̂, (9.10)

where Ŝ = U′(±[ΣΣΣ′]1/2), L̂ = (±[ΣΣΣ′]1/2)V′, U’ contains the first three left singular
vectors, Σ’ contains the three highest singular values along its diagonal, and V’
contains the first three right singular vectors. Note, however, that this approxima-
tion is only valid when the ratio between the third and fourth largest singular value
is large enough Hayakawa (1994).

b) Constraining the Factorization

The factorization we obtained in the previous section, however, is not unique. We
can easily see this fact if we consider any arbitrary invertible matrix A.

Î = (̂SA)(A−1L̂) (9.11)
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Therefore, we must find the A matrix such that

S = ŜA, L = A−1L̂ (9.12)

We refer to the incorrect normals obtained in Ŝ as pseudo-normals. To constrain
the A matrix, we must find at least p′ = 6 points on the image with constant
surface reflectance. Assuming the material is homogeneous, we can manually select
points that have relatively different surface normal orientations. For each of the
corresponding p′ pixels, we obtain these pseudo-normals ŝk from the row space of Ŝ
and constrain A such that

ŝk
TAAT ŝk = r, k = 1, ..., p′ (9.13)

where r is the relative surface reflectance. If the exact value of the reflectance is
unknown, we can assume r = 1. We can first solve for B = AAT via a simple
linear system of equations. Note that since B is a symmetric matrix, there are only 6
unknown entries in the matrix, which is why we p′ � 6. Once we obtain B, we can
solve for A by computing the SVD of B. Since B is symmetric, its SVD is given by
B =WΠWT . Therefore, we can determine that

A =W[ΠΠΠ]1/2 (9.14)

From A, we can determine S based on Fig. 9.12 Hayakawa (1994). Be sure to
normalize the length of the normal vectors.

c) Transforming Normals to Viewer-Centered Coordinate System

The surface normalswe obtained in the previous subsection are oriented in an arbitrary
coordinate system. We want the normals to be oriented relative to the camera’s
position. Manually find three points in the scene whose surface normals are oriented
along the positive x, y, and z directions. Construct the following change of basis
matrix

B =



| | |
v1 v2 v3

| | |



−1

where v1, v2, and v3 are the corresponding computed surface normal vectors at those
three points. We can determine the correct orientation of all points in the scene
by applying this linear transformation (i.e. change of basis) to every normal in the
image.

d) Normal Map and Error Analysis
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Plot the normal map and a sample reconstructed shading image. Also, calculate the
error as you did in the previous section. Comment on the difference in performance
between the two methods for photometric stereo (with known and unknown lighting),
and potential reasons for the difference in performance.
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Figure 9.3: Insert an object image and its corresponding specular sphere image (replace
our example).
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Figure 9.4: Insert your segmented specular sphere image (replace our example).

Figure 9.5: Label the point of specularity on your sphere image (replace our example).
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Figure 9.6: Insert the normal map of the original object (replace our example).
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Mean Normalized Error = 0.01041, Median Normalized Error = 0.002481
Figure 9.7: Insert the reconstructed shading image and the error statistics (replace our
example).
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Mean Normalized Error = 0.1241, Median
Normalized Error = 0.07291

Figure 9.8: Insert the normal map and reconstructed shading image obtained with unknown
lighting conditions (replace our example).
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10 Light Transport

In this chapter, we discuss light transport – an analytical framework that aims to describe the
interaction between light and matter. Although light transport may seem to have a similar
scope as the field of optics, there are distinctions. In particular, light transport involves
the use of simplified representations of light (e.g. ray-based when possible, instead of
wave-based) for the benefit of computational tractability. For this reason, researchers in
vision and graphics sometimes add the additional adjective of computational, referring to
computational light transport (CLT).

10.1 Motivation

10.1.1 Curse of Dimensionality
Light transport is a simplification tool for the complexity of light. In an ordinary scene,
there are trillions of light paths interacting with the scene. Imagine a scene that has been
subdivided into three patches of space, each consisting of 100 × 100 scene points. From
the lens of geometry alone, there are 1 trillion possible light paths that connect each pixel
(1002 × 3). From the lens of color, polarization, and transient variation, there would be
even more light paths. Unfortunately, an imaging system is tasked to sample this space
with a camera that operates in megapixels (MP). This introduces a curse of dimensionality:
trillions of light paths, sensed only by millions of pixels. To address this curse, light
transport makes two simplifications. The first simplification is to reduce the optical
complexity of the scene to the minimum amount of dimensionality that we feel is necessary
to address an applied problem. For example, if trying to see around corners in grayscale, we
might not need to consider color variations. The second simplification is to reduce high
dimensional light paths into a representation space that maps to the millions of pixels in
imaging hardware, such as projectors, cameras, or other pieces of computational imaging
hardware. In this way, light transport forms a bridge between unobtainable information
(trillions of light paths) to obtainable measurements (cameras or projectors).
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10.1.2 Light Transport Addresses Curse of Dimensionality
To overcome the high-dimensional nature of light transport, it is possible to relax the
problem. Let us now dive deeper into the two simplifying reductions (from 10.1.1), which
form the core of research advances in light transport. The first simplification was to use
the minimum amount of optical degrees of freedom as needed. As we have seen earlier, (in
chapter 6) the 7D plenoptic function under certain assumptions and relaxations simplifies
to a 4D light field, which is easier to sample and operate on. The second simplification
is identifying a representation space for light paths. Section 10.2.2 lays the foundation to
this idea, by decomposing light transport of a scene into a sum of different inter-reflection
components, but this decomposition is not realizable in practice. In Section 10.3 we
discuss approaches which relax light transport in different ways. We start with a binary
approach (10.3.1) that separates light transport into either global or direct light paths
under a smoothness assumption in the frequency domain. Section 10.3.2 discusses finer
separation of light transport, by separating the global component into near and far global
components. In Section 10.3.2 we also discuss discuss how combinations of light transport
and optical techniques like interferometry can be used to achieve even finer decomposition
of light transport. These techniques are useful in addressing various imaging applications
like de-scattering, skin imaging and time-of-flight imaging.

10.1.3 Forward vs Inverse Light Transport
Light transport involves capturing the image of scene (I) illuminated by a source (S) using
a sensor (P). For simplicity P can be thought of as a camera sensor, and we do not need to
factor in the lens. There are two broad forms of light transport:

• Forward Light Transport - Forward light transport addresses how a given scene appears
under certain illumination conditions. Rendering approaches used in the field of com-
puter graphics can be thought of as forward light transport. Ray tracing is a popular
graphics technique for rendering scenes, which models image formation by tracing
the path of light from the illumination source to the sensor pixels, and simulating the
interaction of the light ray with the objects in the scene. Section 10.2.1 looks at the
forward light transport approach, but instead of ray tracing we model image formation
using a light transport matrix.

• Inverse Light Transport - Most of the work in imaging addresses the problem of
inverse light transport. Given a photograph of I acquired on the sensor P, inverse
light transport aims to decompose it into multiple components, where each component
records the contributions from certain groups of light paths in the scene. The second
simplification in Section 10.1.2 corresponds to the components we expect to recover as
a solution of the inverse light transport.
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10.1.4 Chapter Organization
The chapter is organized as follows. We begin with a discussion of forward light transport
in Section 10.2.1 by introducing the light transport matrix, and associated concepts of
superposition and Helmholtz reciprocity. Section 10.2.2 describes inverse light transport
and its relaxations in Section 10.3. In Section 10.4, we have a detailed look at one of
the most popular problems in computational imaging: non-line-of-sight imaging. We
conclude the chapter in Section 10.5, summarizing additional real world applications of
light transport.

10.2 Light Transport Matrix

The light transport matrix describes the relationship between lighting, scene, and sensing.
Here, we offer two views of the light transport matrix, from a forward (10.2.1) and inverse
(10.2.2) perspective.

10.2.1 Light Transport Matrix: Forward Perspective
The light transport matrix, T, is a part of the light transport equation: p = Tl (where p is
an n × 1 vector of irradiance measurements, aka camera pixels, and l is an m × 1 vector of
independent source/illumination pixels). It is an n × m matrix, with n being the irradiance
measurements (e.g., camera pixels) and m being the independent illumination degrees of
freedom (e.g., scene pixels). In modeling the propagation of light between a projector
and a camera, the light transport matrix holds crucial information about the scene being
illuminated. Using the light transport matrix, we can relight a scene to create novel pictures
through the manipulation of various bounces of light. The transport matrix adheres to the
superposition principle in that it allows for the creation of images under different lighting
conditions. Mathematically, if the first and second light sources are represented by,

p1 = Tl1, p2 = Tl2,

respectively, then their summation allows for new images, due to the ability to manipulate
lighting conditions. It is clear that a sum of the two equations would lead to a scene in
which the illumination is the superposition of the two original illuminations:

p1 + p2 = T (l1 + l2) .

Another important application involves using the transpose of the transportmatrix to capture
two different perspectives using a fixed camera and projector. Suppose we had a scene with
a playing card in it as in Fig. 10.1, with the projector facing the front of the card and the
camera facing the back, along with an object for light to reflect off of (in this example, a
book).
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Figure 10.1: Dual Photography leverages the light transport matrix and Helmholtz reci-
procity to swap camera and projector viewpoints. (a) The setup, with the projector viewing
the card’s face and the camera viewing its back. (b) Live photo of the setup. (c) The
produced image using dual photography Sen et al. (2005).

It is possible to image the card such that its front is visible, even though the camera is
facing its back. The Helmholtz Reciprocity Principle enables this, stating that the light
transport will be the same regardless of the flow of light. It relies foundationally on the
conservation of energy. Since, by this principle, the same light is measured whether it starts
at the projector or the camera, the transport matrix T can be transposed in order to produce
a dual image as per the equation p = T�l Sen et al. (2005).

The dual image, as seen in Fig. 10.2, is synthesized and is from the projector’s point of
view, with illumination as if it were coming from the position of the camera. Through this
concept, referred to as dual photography, the viewpoints of the camera and projector can
be swapped. In summary, by the light transport equation, the picture at the camera (the
primal image) is given by l = Tp, while the picture at the projector (dual image) is given
by p = T�l (as shown in Fig. 10.3).

Although swapping the projector and camera viewpoint to see the playing card is an
incredible result, it requires that the projector be positioned in the line of sight to view the
front of the playing card. Later in this chapter, we will discuss methods that can see around
corners without a gadget in the line of sight.

10.2.2 Light Transport Matrix: Inverse Perspective
From this section onward, we focus our discussion on inverse light transport. While
forward light transport focuses on the propagation of light through a known scene, inverse
light transport aims to infer the path of light in an unknown environment. The path of light
can be parametrized by bounces of light. Concretely, an ordinary image I of a scene can be
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Figure 10.2: Example of Dual Photography (a) The primal image. Lighting is from the
perspective of the projector, and the photo has a resolution equal to that of the camera.
(b) The dual image. Lighting is from the perspective of the camera, and the photo has a
resolution equal to that of the projector Sen et al. (2005).

decomposed into an infinite summation of images I = I1 + I2 + · · · where Ii is the image
containing ith order inter-reflections.

Consider a setup with a scene, light source and camera. Consider any x′, x and y to be any
arbitrary set of points on the source, scene and camera sensor respectively. Let ωx

x′ denote
rays originating from x′ and directed to x. Let Lin

(
ωx

x′
)
denote the radiance as a function

of all incident light rays ωx
x′ , where x′ is the collection of source points that illuminates the

surface points represented by x. Similarly Lout
(
ω

y
x
)
represents radiance as a function of all

outgoing light rays ωy
x. Since the outgoing light field, Lout

(
ω

y
x
)
is partially composed of

light that has been reflected by other surface points before reaching x, we can decompose
this light field to

Lout
(
ω

y
x
)
= L1

out
(
ω

y
x
)
+ L2,3, · · ·

out
(
ω

y
x
)
,

where the direct component, L1
out

(
ω

y
x
)
, is determined by how the surface material reflects

light off of the points x on the surface (e.g., bidirectional reflectance distribution function
(BRDF)), and the indirect component, L2,3, · · ·

out
(
ω

y
x
)
is the contribution of all the interreflec-

tions that strike x after hitting some number of surface points first Seitz et al. (2005). For
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Figure 10.3: Primal and Dual ImageMatrices. The left diagram illustrates the primal setup
where light is emitted from the camera and captured by the projector. Helmholtz reciprocity,
a consequence of conservation of energy, suggests that we can reverse this operation. For
example, assume a ray from a projector pixel strikes the scene and is captured by a set of
camera pixels. If those camera pixels were instead virtual projector pixels, the same amount
of light would hit the scene and reach that single projector pixel (now virtual camera). As
illustrated in the right diagram, we can mathematically swap the location of the projector
and the camera, in order to find out what virtual camera would be capturing if it was in the
projector’s place Sen et al. (2005).

k discretized surface points, we can rewrite the above equation as

Lout = L1
out + ALout,
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where A ∈ Rk×k is the matrix that characterizes the proportion of irradiance (defined in
Chapter 2) from x′ to x that is radiated towards y. Rearranging this equation gives

Lout =
(
C1

)−1
L1
out,

which is indicative of relaxing the full light transport concept to an interreflection can-
cellation operator C1 = (E − A), where E is an identity matrix, that just maps a direct
illumination light field to a general light field (with direct and indirect components) Seitz
et al. (2005). C ∈ Rk×k is defined in the context of shape and reflectance properties (e.g.,
BRDF). This image formation process can be modeled by introducing the light transport
matrix T ∈ Rk×k , which can be measured as described in Section 10.3.2. As a consequence
of T, we can say that

L1
out = T1Lin,

where T1 contains the components of T that are due to 1-bounce reflections Seitz et al.
(2005). Given this context, we can now extend our analysis to n-bounce reflections. Using
the principles derived earlier, we can generalize

Ln
out = CnLout.

Using Lambertian approximation for the surface, the cancellation operator can be expressed
using T as

C = T1T−1,

where T1 ∈ Rk×k is the diagonal matrix containing the reciprocal diagonal elements of T−1

Seitz et al. (2005). Thus, we practically decompose Lout into its component interreflections.

Ultimately, the existence of the cancellation operator shows that it is possible to compute
different n-bounce reflections of a scene. However, capturing the light transport matrix is
not efficient, which in turn makes the process of calculating the cancellation operator hard
to implement. In the following subsections, we shall see how to alleviate this problem
by relaxing the inverse light transport problem allowing us to probe and manipulate light
transport using the principles of light transport matrix, but without having to acquire the
full matrix. In the process we shall also discover interesting relations between the scene
constituents and the nature of the light transport matrix.

10.3 Relaxations of Inverse Light Transport

In the last section, our discussion of inverse light transport was conducted in the context
of an infinite sum of n-order light bounces. When building a practical imaging system, it
is nearly impossible to measure the number of bounces of a light path. In this section, we
discuss two specific relaxations of light transport: global-direct separation in 10.3.1 and
optical probing in 10.3.2.
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Figure 10.4: Separation of Global and Direct for a Complex Scene. (a) This is the
original image of a scene with many optically complex objects. (b) This is the decomposed
direct illumination image. It has been scaled up by a factor of 1.25. (c) This is the
global illumination image which includes diffuse and specular interreflections (wall wedge
and nut), volumetric scattering (milky water), subsurface scattering (marble), translucency
(frosted glass), and shadow (fruit on board) Nayar et al. (2006).

10.3.1 Global and Direct Separation
The light in an illuminated scene consists of two components: direct and global illumination.
The direct component provides information with regards to how the material and local
geometric properties of a scene interact with the light source and camera. The global
component reveals the complex optical interactions within a scene, specifically between
different objects andmedia. It also models interreflections and subsurface scattering, which
indirectly illuminate a scene. The direct component is the light paths that reach the camera,
from an object that has been illuminated directly by the source. In the framework of 10.2.2,
it can be seen as a 1-bounce light path: from light source, to object, to camera. In contrast,
the global component is formed from light paths that reach the camera, from an object that
has been illuminated indirectly from the source. Here, indirect means that the object is not
illuminated directly by the light source, but by light that has bounced off other objects in
the scene. In the framework of 10.2.2, the global component refers to the summation of all
n-bounce light paths, where n is greater than 1. To illustrate the contrast between global and
direct components, let us examine convex and concave shapes. Light will bounce directly
off a convex object, while it may reflect within a concave object, hitting the inner walls
before traveling to the camera.

Fig. 10.4 depicts the separation of direct and global components in a real scene Nayar et al.
(2006). The authors have chosen this particular image for its remarkable effects of light
transport. The V-groove where the two walls meet follows the logic we just described
about convex and concave objects. The marble appears bright in the global image due
to subsurface scattering, which has a high global component. The surface of the curtain
appears dark in the global image, except for the fringes which exhibit subsurface scattering.
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Figure 10.5: Direct-Global Decomposition of Concave and Convex Surfaces. Concave
surfaces are curved inwards, while convex structures are curved outwards.

The milky water appears dark in the direct image, but bright in the global image due to the
scattering of milk.

Another example that illustrates direct and global components can be seen in Fig. 10.5.
Here, we examine both the concave and the convex geometry of the V-groove. For the direct
component of both of these different shapes, we get the same 2D image since the direct
image only takes into account the light that travels directly back from the V-groove and not
the interreflections. In contrast, while the concave geometry exhibits a global component
because of the scattering of light, the convex geometry has a flat global image.

In separating the original image into the direct and global components, we gain the knowl-
edge required to perform image manipulation and reveal more information about a scene.
This makes direct-global separation a useful technique, which has a lot of exciting applica-
tions like novel scene synthesis, mitigating multipath interference in time-of-flight imaging,
skin imaging and many more. (Refer to Section 10.5 for more details on the applications
of global-direct separation.)

One can theoretically measure global light by illuminating one point of the scene at a time
and capturing an image to determine the contribution of this point to all other points Seitz
et al. (2005). However, this method is too expensive to have practical applications.

However, through the use of high frequency illumination, it is theoretically possible to
separate direct and global light using just two images Nayar et al. (2006). This approach
requires certain assumptions. Each point in the scene must only be illuminated by at most
one source element. In other words, only a single light source is used. Additionally, the
global contribution of each scene point is assumed to be a smooth function with respect to
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frequency of the lighting. In terms of equipment, the camera is assumed to have infinite
resolution and the projector is idealized to create patterns devoid of light leakage. With a
practical camera of finite resolution and a projector with leakage and defocusing, around
25 images are required to produce the desired separation.

In a high frequency binary illumination pattern (alternating lit and unlit patches along the
scene’s surface), the lit patches contain both direct and global light while the assumption
is that patches unlit by the light source consist of only global light. This “smoothness
assumption” in light transport is what makes the separation feasible, as patches may be
subtracted to achieve separation (recall that L = Ld + Lg). Dividing the surface into N
sections, with M of the N sections directly corresponding to a pixel of the source, we can
define L [c, i] as radiance of a patch i, measured by a camera c. Defining A [i, j] as the
reflectance distribution over the set of patches i, j ∈ P (where P is the set of patches in the
scene), we derive Nayar et al. (2006),

Lg [c, i] =
∑
j∈P

A [i, j]L [i, j] ,

Lg [c, i] can be further decomposed into Lgd [c, i] and Lgg [c, i]. Lgd represents the direct
component of radiation from scene patches (i.e., applicable to the light travel scenario:
source → other patch → patch of interest). Lgg represents the global component of
radiation from scene patches (i.e., applicable to the scenario: source → occurrence(s) →
other patch → patch of interest). In a pattern where only a fraction of the source’s patches
are lit (a checkerboard pattern), with a good distribution for high frequency, α represents
this fraction. Let L+ be the image of the scene lit with high frequency illumination with
a fraction of the activated source pixels α and L− be the image of the scene lit with a
complementary illumination pattern, i.e., with a fraction of the activated source pixels
1 − α. We define a new L+

gd
as,

L+gd [c, i] = αLgd [c, i] ,

since only the lit patches have a direct component and therefore contribute. Likewise,

L+gg [c, i] = αLgg [c, i] ,

The combination ofL+
gd

andL+gg aswell asLd results in the first image, which is represented
by,

L+ [c, i] = Ld [c, i] + αLg [c, i] .

We represent the complementary illumination with L−. It has (1 − α) activated pixels. It
forms the second image, and is written as,

L− [c, i] = (1 − α)Lg [c, i] .
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The above equations hold under the assumption that the deactivated source pixel does
not generate any light. If this assumption is false, we can assume the brightness of the
deactivated source to be a fraction of the activated element. We denote this fraction by b,
where 0 � b � 1. Taking b into account changes the above equations as follows:

L+ [c, i] = Ld [c, i] + αLg [c, i] + b (1 − α)Lg [c, i] , (10.1)
L− [c, i] = bLd [c, i] + αbLg [c, i] + (1 − α)Lg [c, i] . (10.2)

If α is either close to 0 or 1, the scene would be very dimly lit in one of the illumination
conditions. Choosing α = 0.5 is hence a justified choice as it maximizes the sampling
frequency of illumination in both of the images. Hence if α and b are known, separation
can be done using 2 images. In practice however, it’s difficult to obtain ideal complimentary
patterns, as the lit and unlit regions may have brightness variations. Limited depth of field
of the projector also causes defocusing of certain scene regions. We now demonstrate a
simple experiment to actually apply the above equations for separating global and direct
components.

We now describe how one can separate it into its direct and global components by solving
the above equations. First, we estimate the value of b. To do so, first we project a white
pattern on the screen and capture its image. Similarly we obtain an image of the black
pattern. White pattern corresponds to α = 1, black pattern corresponds to α = 0.

We can then estimate b for each pixel by dividing the black pattern image and the white
pattern image. We call this matrix bmat as it stores the value of b for each pixel. For the
illumination pattern, we use a checkerboard pattern with squares of size 8 × 8 pixels. The
checkerboard pattern (α = 0.5) is shifted 5 times (by 3 pixels each time) along the axes
to obtain a total of 26 images. Using this data, the process of extraction of the global
and direct components from the scene in Fig. 10.4a can be expressed as follows using a
MATLAB style pseudocode

1 %% For a g iven scene :
2

3 % E s t im a t i n g b
4 bmat = Black . / White ;
5

6 % Re s c a l i n g b from 0 t o 1
7 bmat = bmat . / max ( bmat ( : ) ) ;
8

9 % I n i t i a l i s i n g Lp lus t o be a z e r o ma t r i x
10 Lp lus = z e r o s ( s i z e ( White ) ) ;
11

12 % I n i t i a l i s i n g Lminus t o be I n f
13 Lminus = I n f ∗ ones ( s i z e ( White ) ) ;
14
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Figure 10.6: Failed Direct Global Decomposition. Failed separation due to the violation
of the smooth global function assumption, when the checkerboard pattern is shifted. The
highly specular reflections cause residual checkerboard patterns in each component Nayar
et al. (2006).

15 f o r i = 1 :26
16 % img = image c a p t u r e d wi th i t h c h e ck e r bo a r d p a t t e r n
17 Lp lus = max ( img , Lp lus ) ;
18 Lminus = min ( Lminus , img ) ;
19 end
20

21 % D i r e c t Component
22 Ld = ( Lp lus − Lminus ) .∗ (1 . / (1 − bmat ) ) ;
23

24 % Globa l Component
25 Lg = 2 ∗ ( bmat .∗ Lplus − Lminus ) . / . . .
26 ( ( bmat − 1) .∗ ( bmat +1) ) ;

The 26 images obtained by shifting the checkerboard pattern help in accurately estimating
L+ and L−. Using these obtained estimates, the last 2 steps of the pseudocode obtain the
direct and global components Fig. 10.4b-c by solving equations (10.1) and (10.2). The
theory of direct and global separation discussed above is also applicable to other high
frequency illumination patterns like sine waves, and under certain assumptions can achieve
direct-global separation from a single image as well. For sources like the Sun, which cannot
be made to generate high frequencies, occluders like moving shadows in a scene can be
used. If the shadow is thin enough, like in case of a line occluder, global-direct separation
is possible using the method discussed above by approximating α = 1 and b = 0. In
practise however, moving a line occluder throughout the entire scene is time consuming,
hence mesh occluders are more commonly used Nayar et al. (2006).

Let’s now consider a scenario in which global-direct separation fails. Although the high
frequency binary illumination patternworks verywell formany cases, attempting to perform
separation for a scene that contains mirrors violates the assumption that the global function
is smooth compared to the illumination frequency, due to the high-frequency off-diagonal
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structures that mirror reflections produce. This results in failed direct and global images
containing residual checker patterns, as seen in Fig. 10.6.

In the next section, we introduce a method that allows us to perform global-direct separation
by optically probing the light transport matrix while capturing the scene. This approach
also succeeds for cases like Fig. 10.6 which violate the smoothness assumption of the global
component.

10.3.2 Optical Probing of the Light Transport Matrix
Motivations: Acquiring a Light Transport Matrix

So far in this chapter, we have focused on forming images of different bounce orders of
light. Although the light transport matrix is an important tool in this discussion, we skirted
around acquiring the light transport matrix. Now, we assume we do not know the light
transport matrix and seek to capture it.

There are, of course, ways of naively capturing the light transport matrix; for example, Sen
et al. (2005) discuss one such method in their paper on dual photography, which uses a
projector and a light sensor as the setup. Here, the transport matrix is captured by using
the projector to display a variety of different patterns with one element lit up at a time.
Of course, this is very time-inefficient since it requires so many different measurements to
acquire all components of the transport matrix. For example, it took 90 minutes to complete
the brute force pixel scan for a 3 × 3 pixel pattern.

There are other techniques to address this shortcoming, such as fixed pattern scanning.
Fixed pattern scanning allows multiple elements to be lit at the same time. However, it fails
to capture global illumination effects, which are crucial to understanding how an image is
seen. Adaptive multiplexed illumination fixes this problem by illuminating multiple pixels
at once, but controlling which pixels are illuminated so that each camera pixel is not affected
by more than one projector pixel simultaneously.

To find which pixels cannot be illuminated at the same time, we start with one large block
that contains all projector pixels. This block is then subdivided whenever conflicts between
two blocks are found. This iterative procedure continues until each block represents a pixel.
Whereas the brute-force method took 90 minutes for a 3 × 3 pattern, adaptive multiplexed
illumination enables capture of the T matrix in just over 2 hours for a 578 × 680 pixel
pattern.

However, when the scene is dominated by diffuse interreflections or subsurface scattering,
adaptive multiplexed illumination may degenerate into the time-costly, brute-force pixel-
by-pixel method. Also, it lends itself to incorrectly culled blocks: if a block happens to
contribute a small amount of energy to a certain scene, and this amount of energy is below
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the noise threshold contributed by the other blocks, it may be unfairly culled and its energy
lost. This especially becomes an issue while capturing diffuse-diffuse interreflections. To
fix this problem, we can use a hierarchical approach in which the energies are recorded at
the last possible level where they can be measured, ensuring we do not accidentally lose a
block to noise.

Even a compressive sensing approach to capturing the transport matrix, while improving
on the efficiency of the actual capture, takes an inordinate amount of time to post-process
the image afterwards Peers et al. (2009). For a 512 × 512 pixel scene, this method yields a
postprocessing time of fifteen hours. The general trade off is that one must either dedicate
a huge amount of effort to taking all of the images under many different illuminations
as necessary or minimize the effort of capturing the images at the cost of a huge post
processing time.

Clearly, we can’t always easily and efficiently capture the transport matrix. However, opti-
cal computing implements numerical algorithms directly in optics, which allows replacing
matrix products in a numerical algorithm with capturing a scene under a certain illumina-
tion. For example, let’s say we want to find the eigenvector of a certain transport matrix
without figuring out the matrix itself. A numerical algorithm called power iteration can be
used optically in this case to find the eigenvector. The numerical domain power iteration
operation pi = Tli can be implemented by project and capture operations in the optical
domain. This is an iterative process that will converge to the principal eigenvector of the
scene. Apart from this simple example, there are many other iterative algorithms, such as
Arnoldi iteration and generalized minimal residual, that can be used to bypass the need for
the exact knowledge of the transport matrix O’Toole and Kutulakos (2010).

Primal-Dual Coding

We have already seen howwe can use the transport matrix to analyze andmanipulate photos
to our advantage, using the light transport equation p = Tl. However, we can introduce a
new matrix, known as the probing matrixΠ: this matrix allows us to develop a generalized
imaging method for active illumination, operating entirely in the optical domain. The light
transport equation can then be modified using the probing matrix, yielding the transport
probing equation:

p = (Π � T)1,

where the symbol � denotes the element-wise multiplication of twomatrices, and 1 denotes
a vector of ones. The light transport equation only contains degrees of freedom equal to
the number of elements in the illumination vector, whereas the transport probing equation
yields a much greater degree of freedom - equal to the number of elements in the probing
matrix.
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The primary use of the probing matrix is in optical probing - more specifically, in a process
that we call primal-dual coding. This technique is closely related to many methods in
microscopy which are used to enhance microscope performances by eliminating out-of-
focus light.

Primal-dual coding allows simultaneous control over two different aspects of image forma-
tion: first, the scene’s illumination, which we consider the primal domain; and second, the
modulation of the light coming into the camera, which we consider the dual domain. In
physical terms, we project a certain pattern onto the scene we are photographing (practi-
cally, this can be done with a projector); then we use a secondary pattern which we insert
between the scene and the camera, which modulates the light as it enters the camera’s
sensor (which can practically be done using an LCDmask, among other things). In a sense,
primal-dual coding consists of a combination of illumination coding and coded-exposure
photography, but is performed completely externally, without any need to delve inside the
interior of the camera.

We can also study primal-dual coding through the lens of the probing matrix and the
transport probing equation. In the regular light transport equation (Section 10.2.1), we
acquire information of the transport matrix T of size L×P through the illumination vector i
of size L × 1. However, with the transport probing equation, we can use the probing matrix
Π of size L × P to control how T is mapped onto i, which gives us more control over how
the resulting image is formed.

Fig. 10.7 summarizes some of the possible transport probing equations that can be realized
using structured probing matrices.

There are two main optical algorithms for using the probing matrix in practice. The first is
known as path isolation, and the second is the optical probing matrix. We will begin by
discussing path isolation. It is a little simpler conceptually, to discuss as a starting point.

The idea of path isolation is to turn on one single projector pixel at a time, while also
unmasking only one single camera pixel on the camera sensor. With only one pixel active
at either end, we thus have an absolute guarantee that the only light paths contributed to
the photo will be the ones between those two points; since scene points are non-illuminated
(on the projector’s end) or photons are masked (on the camera sensor’s end). To capture
the full photograph, the naive path-isolation algorithm uses a time-multiplexing approach,
in which we look at a certain time slice τ within the exposure period. During this time slice
τ, every possible combination of the projector pixel n and sensor pixel m is accounted for,
where Π [m,n] captures the intensity of the projector pixel during τ.

However, path isolation is not a particularly efficient method of capturing the photograph.
Many probing matrices are sparse matrices, meaning most of the elements have a value of
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(a)

(b)

Figure 10.7: Operations using Probing Matrix. (a) The light transport matrix can be
rewritten as being multiplied element-wise by the probing matrix. This offers a greater
degree of freedom in the light transport matrix. (b) This table outlines some potential
probing matrix operations we can do without knowing the full light transport matrix
O’Toole et al. (2012).
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Figure 10.8: Optical Probing Pipeline. This diagram contains the full pipeline, with
relation to the optical hardware, of the probing procedure O’Toole et al. (2012).

zero. Because path isolation allocates equal time to every element, most of the exposure
time is spent not integrating any light at all. A larger problem with path isolation manifests
when we consider that normally millions of other pixels would, altogether, contribute a lot
of noise on top of the light from the original isolated pixel; in fact, the light of the original
pixel would be completely lost underneath the additive noise from all of the other pixels
combined.

The second algorithm, using optical matrix probing, involves more efficient acquisition
through optical computing. We define {pk} and {mk} to be sequences of column vectors
that correspond to the decomposition of the probing matrix into rank 1 matrices, so that

Π =

K∑
k=1

mk (pk)� .

The probing equation can hence be expressed as

(Π � T)1 =
P∑

n=1
Π [n] ◦ T [n]

=

P∑
n=1

(
K∑
k=1

mkpk [n]
)
◦ T [n]

=

K∑
k=1

(
mk ◦

P∑
n=1

T [n] pk [n]
)

=

K∑
k=1

mk ◦ Tpk,

where T [n] is the nth column of T, and pk [n] is the nth element of pk , and {pk} is the
rank-1 matrix of illumination patterns and {mk} is the rank-1 matrix of masks for optical
probing. We can illustrate this visually, with its correlation to the actual physical hardware,
in Fig. 10.8. A detailed description of the hardware setup to implement optical probing can
be found in O’Toole et al. (2012).
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Figure 10.9: Optical Probing Algorithms. This table contains the two main algorithms
used in the optical probing procedure: path isolation and optical matrix probing O’Toole
et al. (2012).

Fig. 10.9 is a useful table for understanding our two alternate optical algorithms as we have
presented them here - the naive path isolation method and the optical probing matrix:

Optical probing can be used for a variety of image manipulation and information extraction
tasks like enhancing direct components using a single photo, de-scattering using only
two photos, separating the direct and indirect components under high-frequency indirect
transport, and separating low- and high-frequency indirect transport. Optical probing is
also successful in global-direct separation for scenes that violate the assumptions of the
approach in Section 10.3.1 as shown in Fig. 10.10.

The primal dual coding approach is a significant advancement, but it is confined specifically
to a coaxial arrangement of the projector and camera. O’Toole et al. (2014) shows that in a
general non-coaxial formation, the dominant light paths are what we call epipolar and non-
epipolar paths. Epipolar paths contribute to a scene’s direct image, whereas non-epipolar
paths contribute to the indirect components of a scene.

To accommodate general configurations of the projector-camera setup, O’Toole et al. (2014)
introduces the stereo transport matrix. The stereo transport matrix - so named because
the camera and projector form what we call a stereo pair - contains three categories
of matrix elements: epipolar elements, non-epipolar elements, and direct elements, as



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

10.3 Relaxations of Inverse Light Transport 371

Figure 10.10: Light Transport Matrix of a Scene. (a) An image of the scene, containing
various objects that have complex optical interactions. (b) This is a slice of the light
transport matrix for the single highlighted row in part (a). A point (n,m) in the image,
represents the light paths that were emitted by pixel m of the projected and captured by
pixel n of the camera (in the highlighted row). The diagonality of the slice implies that light
was transported between projector and camera pixels that were close to each other. (c-f)
These are various notable aberrations in the light transport matrix slice, and their causes
O’Toole et al. (2012).

Figure 10.11: Stereo Transport Matrix using Epipolar Imaging. This is a diagram of the
Stereo Light Transport setup, where the matrix is subdivided into three groups of light:
epipolar (green), non-epipolar (red), and direct (black) O’Toole et al. (2014).

seen in Fig. 10.11. Epipolar elements require the camera and projector pixels to be on
corresponding epipolar lines. Non-epipolar elements do not have the camera and projector
on corresponding epipolar lines and are by far the most common type of element in
the matrix. Direct elements are those in which the camera and projector are in stereo
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Table 10.1: Overview of Light Transport. This table contains three interrelated views
of light transport. First, Seitz et al. proposes an imaginative idea of exploiting n-bounce
images. Nayar uses a smoothness relaxation to reduce the separation of 1-bounce and
2n-bounce transport to imaging practice. Finally, O’toole shows the ability to further
discriminate global light transport based on the distance from the diagonal of the transport
matrix.

Direct and Global Component Separation Nayar et al. (2006)
Inverse Light Transport and Interreflections Seitz et al. (2005)

Stereo Light Transport Matrix O’Toole et al. (2014)

correspondence - in other words - equivalent to the direct light transport we have already
worked with. The image of the scene (denoted by U) can be expressed as combinations of
these three elements,

U = TDp + TEIp + TNEp,

where TDp is the direct image, TEIp is the epipolar indirect image, and TNEp is the
non-epipolar indirect image. In comparing the different types of matrix elements, we see
that non-epipolar elements outnumber both epipolar and direct elements. Due to this,
non-epipolar dominance is assumed, allowing for simplification of the matrix.

Table 10.1 summarizes the three ways of light transport decomposition we have looked at
so far.

Probing Light Transport using Interferometry

Optical probing using the primal-dual coding approach allows us to implement a generalized
probing pattern, but it does not account for path length resolution. While interferometry has
been widely used in other areas, such as in astronomy, and physics, it’s relatively unexplored
in computational imaging. Optical interferometry allows for much higher precision in path
length resolution, up to an order of 10 µm - but it can only be applied to small volume
regions. The interferometric approach is thus useful for analyzing light transport at a
micron scale, finding applications in microscopy and tissue imaging.

The light transport matrix can be decomposed as a sum of its constituents with varying
path lengths τ.

T =
∑
τ

Tτ .

Following this decomposition, capturing images i of a static scene under uniform illumina-
tion vector of I = 1 can be described by:

i =
∑
τ

ω (τ) (M � Tτ)1.
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Here, M is a binary matrix of dimension P × L where L is the number of points on the
source and P is the number of pixels on the sensor. If Mpl = 0, the contribution of the path
beginning at the point l on the source and reaching the pixel p on the camera is removed.
Analogous to this, ω (τ) is a binary function and can remove the contribution of paths of
length τ. For a regular image, ω (τ) and M are 1 everywhere as none of the paths are
ignored.

Spatial decomposition techniques vary the contributions of spatial light paths by changing
M but keeping ω (τ) constant. On the contrary, interferometric approaches vary ω (τ) to
achieve path length resolution. Interferometric approaches for scene decomposition and
optical probing are largely based on the classical Michelson interferometer setup.

Let dr be the distance between reference arm and the beamsplitter, while ds be the distance
between the target mirror and the beamsplitter. The temporal coherence of the light source
is the average correlation between its two instances delayed by τ, at any pair of times. If
|dr − ds | is larger than the temporal coherence, the camera’s measured image will be equal
to the sum of the two images of the mirrors, i.e., no interference takes place. |dr − ds |
smaller than the temporal coherence results in interference, with a fringe pattern recorded
by the camera.

Using temporal coherence and detecting the extent of interference allows separation of
light paths with different path-lengths down to a resolution equal to the temporal coherence
length. Additionally, taking spatial coherence into account allows a precise spatial sepa-
ration of light paths. An interference pattern is created if two light paths originate from
points within the spatial coherence length of the source, and combine at the same camera
pixel.

However, the method we just discussed is somewhat constrictive, as it focuses almost solely
on diagonal probing, which corresponds to the direct component of the image. Kotwal
et al. (2020) introduces an interferometric approach using coded mutual intensity, which
enables direct versus global decomposition and descattering (similar to primal-dual coding
method discussed earlier).

The coded mutual intensity approach adds optical components to the original Michelson
interferometer which enable amplitude and phase modulation Fig. 10.12b. Modulating the
amplitude and phase separately between the reference arm and source arm achieves two
different effects: incoherent probing of the light transport matrices yields global versus
direct separation, whereas coherent probing of transmission matrices allows us to perform
descattering. Longer path lengths indicate indirect or global components, whereas shorter
path lengths belong to direct components.
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Figure 10.12: Michelson Interferometer Light Transport Probing. (a) An input beam is
split by a beam splitter into two copies which reflect off the twomirrors at differing distances
from the source; the two copies then recombine at the beamsplitter before being imaged by
the camera. One of the mirrors is the target arm (scene) and the other is the reference arm.
(b) Varying the source coherence properties, light of different lightpath decompositions can
be captured Kotwal et al. (2020).

This is the first approach to perform both coherent probing of transmission matrices and
incoherent probing of light transport matrices using complex probing patterns.

Coherent probing can be used for descattering by suppressing the scattering effect using a
probing pattern that emphasizes the diagonal of the light transport matrix while subtracting
the first few off-diagonals.

While the interferometry methods provide high resolutions, they are limited in that they are
extremely sensitive to vibrations due the small path lengths they consider.

In this section we looked at a broad spectrum of approaches and relaxations to solve inverse
light transport that allow separating light paths in global and direct components and are
also capable of optically probing the light transport matrix. A combination of precise
hardware setups and clever algorithms facilitates the use of light transport for a variety
of practical applications. The remaining part of the chapter focuses on various complex
imaging problems, which can be tackled using the principles of light transport we studied
so far. To this end, the next section introduces the problem of non line of sight imaging.
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Figure 10.13: Types of NLOS detection methods. We discuss time-of-flight- (a) and
intensity- (c) based methods in this chapter Maeda et al. (2019).

10.4 Non Line of Sight Imaging

In Section 10.2.1, we discussed the example of seeing the hidden playing card using Dual
Photograph, where a projector was placed in the hidden scene. Here, we discuss methods
to see around corners with no gadget in the line of sight.

Although the history of exploiting scattered radiation dates back to radar and seismic tech-
niques, the concept of photography around corners may originate with a 2008 technical
report from Raskar and Davis (2008). This report conceptually formulated ideas of see-
ing around corners or Non-Line-of-Sight (NLOS) Imaging as a set of techniques aimed
at recovering objects hidden around corners, with applications in disaster management,
endoscopy, self-driving cars, and many more areas. NLOS imaging (hereafter, “NLOS”)
can be expressed mathematically as the forward model:

y = f (x) + ε,

where x represents the parameters of the hidden scene such as albedo or class of hidden
objects and ε expresses the noise. f (·) is a map from the hidden scene to the measurement
y. This map is determined by the illumination, geometry of the hidden scene and the
sensor. The aim is then to devise algorithms that invert the mapping f (·) such that x can be
recovered when y is given, i.e., properties of the hidden scene can be uncovered by taking
some imaging measurements of the visible scene.

Advances in imaging technology have made NLOS possible through a variety of different
methods (Fig. 10.13). We focus on two popular classes of NLOS imaging methods:

1. Time-of-Flight methods (Section 10.4.1): The time it takes a photon to traverse its
optical path after being reflected from the hidden scene is analyzed to detect properties
of the occluded elements.
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2. Intensity based methods (Section 10.4.2): By exploiting the surface reflectance of a
relay wall or object, this method recovers hidden scenes using typical (RGB) cameras,
including smartphones, thus making NLOS accessible.

Our discussion about NLOS will be mainly centered around time-of-flight and intensity
based approaches. Coherence based approaches are beyond the scope of this text, but are
mentioned briefly in Section 10.5.3 from an applications perspective.

10.4.1 Time-of-Flight Methods
10.4.1.1 Transient Imaging Each ray of light takes a distinct path through a scene. How-
ever, light travels extremely fast (∼ 1 foot/nanosecond). As a result, in a room-sized
environment, a microsecond exposure (integration) time is long enough for a light impulse
to fully traverse all the possible multi-paths introduced due to interreflections between scene
elements and reach steady state.

Traditional 2D cameras sample very slowly compared to the time scale at which the transient
properties of light appear. Hence, they are only able to capture the final steady state sum
of the rays at each camera pixel and express light intensity by I (x, y). This is known
as steady-state light transport. In this case, we assume that light takes no time to reach
the final steady state, and hence the time parameter of light transport is ignored. This
loss of multi-path information is responsible for limitations in traditional imaging imaging
methods. Transient imaging overcomes these limitations by using cameras that are capable
of sampling at sub-picosecond scales along with ultrafast femtosecond lasers. A transient
imaging camera can capture a 3D time-image, expressing light intensity by I (x, y, t). This
allows us to directly observe the path of a ray traversing the scene as a function of time, and
analyze this light transport to discover various properties, such as the geometry of a scene.
The effects of multi-path interference (MPI) can be captured in image space. Marco et al.
(2017) utilize this fact to model MPI as a 2D convolution, since each pixel’s light transport
can be expressed as a linear combination of that of all other pixels. Using this observation,
the effects of MPI can be corrected or leveraged using a convolutional neural network.

Transient imaging is one of the early methods to achieve NLOS. In contrast to the dual
photography approach that required an illumination source to be in the line-of-sight, this
method enables the camera to take a picture of an element occluded from both the camera
and the illumination source by analyzing the light multipath information obtained through
transient imaging.

Geometry of visible and hidden elements

We first understand how to use transient imaging along with the Space Time Impulse
Response (STIR) to estimate the geometry of a visible scene. Dividing a scene S into M



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

10.4 Non Line of Sight Imaging 377

Figure 10.14: Measuring the Space Time Impulse Response (STIR). (a) A single patch
is illuminated at a time (p1 in the upper image and p2 in the lower image), and the times
at which reflected light reaches the camera (p0) are recorded for each patch Kirmani et al.
(2009). (b) Onset data collected from illuminating visible patches can be used to calculate
the locations of hidden ones (assuming third-bounces arrive before fourth-bounces, no
interreflections, a known number of hidden patches) Kirmani et al. (2009).

distinct patches, we assume that every patch is visible from all other patches, and that every
patch has a non-zero diffuse component.

Consider a transient imaging system consisting of a pulse illumination source and a gener-
alized sensor. Each sensor pixel (xi, yi) observes a unique patch pi in the scene over time.
(θi,Φi) represents the direction of a ray generated by the pulse source illuminating patch
pi . By synchronizing the sensor and illumination, the Time Difference of Arrival (TDOA)
of light is measured at regular intervals. This system is then used to form STIR (S) of the
scene. The 5D function is given by STIR (xi, yi, θi,Φi, t) and measured by Kirmani et al.
(2009):

• For every patch pi : i = 1, · · · ,M

(a) Illuminate pi with an impulse ray (θi,Φi)

(b) Capture a time-image of every patch pj visible to

pi : {I
(
xj, yj, t

)
, j = 1, · · · ,M, t = 0, · · · ,T = STIR

(
xj, yj, θi,Φi, t

)
}.

We now define O1 = {O1
i |i = 1, · · · ,M} as the set of first onsets, i.e., the collection of

all time instants O1
i when the pixel observing patch pi receives the first non-zero response

while the source illuminates pi . In Fig. 10.14, O1
i is the time it takes for the light impulse
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ray that starts at p0 and is directed towards pi to go to pi and come back, thus tracing the
direct path p0 → pi → p0. Analogous to this, the set O2 is the set of second onsets, and is
defined by O2 = {O2

i j |i, j = 1, · · · ,M; i � j}. It is the set of time instances when the camera
first receives a non-zero response at patch pi while the illumination is directed at patch pj .
By Euclidean geometry, we have O2

i j = O2
ji . With this collection of first and second onsets,

we can compute the direct distance of each patch from the camera, as well as the relative
distances between all patches, thus inferring the geometry of the sceneKirmani et al. (2009).
If D =

[
di j

]
is the matrix of pairwise Euclidean distances between all patches, including

p0 = camera, we define d = vec (D) and T2 to be the [M(M + 1)/2]×[M(M + 1)/2]matrix
that contains the sum of possible pairings of path lengths between the M patches 8.

We can then find the distance estimates d̂ by solving the linear system T2d = cO where c
is the speed of light. For example, for Fig. 10.14, the system is given by:



2 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
0 0 0 0 2 0
0 0 0 1 1 1
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These pairwise distances d̂ are then used to make conclusions about the geometry of the
scene by using an isometric embedding algorithm Kirmani et al. (2009).

The geometry of hidden scenes can also be recovered similarly if some assumptions are
made. We assume that we know the number of hidden patches, and that all third bounces
of light arrive before higher order bounces, which is true when there are no interreflections
amongst hidden patches.

For a hidden patch pi , since the first and second onsets cannot be observed, we find the set
of third onsets O3. Based on Euclidean geometry, O3

i jk
= O3

k ji
.

Assume that as shown in Fig. 10.14, patches p2 and p3 are hidden. We first find d01, d04,
d14 as these are visible. Next, we apply a labelling algorithm to identify all third onsets.
O3

141 and O3
414 are found from TDOA since p1 and p4 are visible, and hence distances are

known. Additionally, O3
124 = O3

421 and O3
134 = O3

431 . We use this equality relation to
find these onsets. Furthermore, we make assumptions about the proximity of the hidden

8 M + (M − 1) + (M − 2) + · · · + 1 = M(M − 1)/2
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patches. For example, we may assume without loss of generality that p2 is closer to p1 than
p3, and hence O3

121 < O3
131, which allows us to label these onsets as well.

We can then construct an operator T3 such that T3dH = cOh where dH is the distances to
the hidden patches and Oh is the third bounces of arrival times corresponding to hidden
patches Kirmani et al. (2009). In the given example, we can then solve the system:



2 0 0 0
1 1 0 0
0 0 2 0
0 0 1 1





d21

d24

d31

d34



= c



O3
121 − O1

1
O2

124 −
(
O1

1 +O1
4
)
/2

O3
131 − O1

3
O2

134 −
(
O1

1 +O1
4
)
/2



.

This enables us to reconstruct the geometry of the hidden scene using the same isometric
embedding algorithm that is used for visible elements.

On a similar note, Pandharkar et al. (2011) proposed an algorithm using the constrained
least square model for estimating motion and absolute locations of NLOS moving objects
in cluttered environments through tertiary reflections of pulsed illumination, using only
relative time differences of arrival at an array of receivers. The authors also presented a
method to estimate the size of NLOS moving objects by back projecting extrema of their
time responses.

10.4.1.2 3D Shape Recovery From Hidden Scenes

Streak Cameras + Femtosecond Lasers However, the method proposed in the previous
section assumes well separated and isolated hidden patches with known correspondence
between hidden patches and recorded pulses. In addition, the images recovered are 2D.

In this section, we will discuss another method to recover the 3D structure of a hidden scene
by extracting information from the multi-bounce path of light. The setup of this method
consists of a diffuser wall, an ultrafast pulsed laser and a streak camera that is capable of
sampling at extremely short time intervals to produce time-images. The setup is shown in
Fig. 10.15a.

In this setup, a light impulse reflects off the diffuser wall and onto the hidden scene.
It then reflects back onto the wall, carrying information about the 3D geometry of the
hidden scene which the camera then captures. The streak camera has one spatial and one
temporal dimension, and we focus it on the dashed line segment along the wall as shown
in Fig. 10.15a. We capture images only of this line segment over time intervals as short as
2 picoseconds to create the space-time image. The streak image looks like the hyperbolic
curve shown in Fig. 10.15b. This is because the impulse of light has a spherical wavefront
propagating from the hidden scene and it arrives at different points on the diffuser wall
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Figure 10.15: Image Capture Procedure and Geometry. The laser is aimed onto the wall
via galvanometer and mirrors (a), and the camera takes a series of images in time (b). A
confidence map of the hidden object (c) can be constructed from the results Velten et al.
(2012a). (d) The hyperbolic curves in the individual camera images result from the varying
distances (left) and thus times (right) light travels to reach the sensor Gupta et al. (2012).

with different time delays (Fig. 10.15). As different spots on the wall are illuminated, the
hyperbolic curves vary according to the encoded information.

To analyze the light reflected from the hidden scene, it’s important to ensure that no light
is reflected directly off the wall without reaching the hidden scene. Hence, the laser only
illuminates a spot above or below the dashed line. By pointing the laser to illuminate
multiple spots on the wall and capturing multiple time-images, we can uncover enough
information about the hidden scene to reconstruct it.

However, while the images captured by the streak camera contain information about the
hidden scene, they lack correspondence information. We do not know which light pulse is
caused due to which surface point in the hidden scene. As demonstrated in Fig. 10.16, this
problem is solved using a backprojection algorithm Velten et al. (2012a).

Consider any pixel p in a streak image with non-zero light intensity. The possible locations
which could have contributed intensity to this pixel lie on an ellipsoid in Cartesian space.
The focal points (L,w) of this ellipsoid correspond to the point on the wall illuminated by
the laser and the point on the dashed line where it was reflected from the hidden scene
(Fig. 10.16). In 2D, the intersection of the ellipses corresponding to some pixels p, q,
r of a streak image would uniquely determine the location of the hidden surface patch
contributing to these pixels. However, in practice, we do not know if light detected by 2
pixels came from the same 3D surface point, and hence we create a likelihood model Velten
et al. (2012a).
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Figure 10.16: Backprojection Geometry. The set of possible hidden object locations
corresponding to an image pixel form an ellipse, as each image corresponds to a set
distance that light has travelled Gupta et al. (2012).

For this model, Cartesian space is discretized into voxels9 and we compute the likelihood
of each voxel being on the hidden surface Velten et al. (2012a). Each pixel in the streak
image is allowed to “vote” for every voxel that lies within its corresponding ellipsoid.
Additionally, each pixel’s vote is multiplied by the distance it travels between the wall and
the hidden scene to account for distance attenuation (r2r3 in Fig. 10.15). Thus, the more
votes a voxel has, the more likely it is to lie on the hidden surface. The 3D scalar function
on these voxels is called a heatmap. By summing the weighted intensities from all pixels
of a single streak image, we can estimate a heatmap of the target patch. We can repeat
this process by illuminating different points on the diffuser-wall to get many streak images
(Fig. 10.15b), and hence better approximations to the heat map (Fig. 10.15c).

The final step of the reconstruction algorithm is filtering. The second derivative of the
heatmap along the depth (z) projected on the x − y plane reveals the hidden shape contour
as seen in Fig. 10.17d.

Single Photon Avalanche Diode

9Voxels represent values in a regular grid in 3D space. Unlike pixels, they do not have specific coordinates, and
their position is inferred from their position relative to other voxels.
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Figure 10.17: Example Streak Images. Many streak images are captured (b) for any given
hidden object (a). The hidden object can be recovered via backprojection (c), then filtering
(d) Velten et al. (2012a).

Compared to using femtosecond lasers and expensive streak cameras for non-line-of-sight
imaging, a single photon avalanche diode (SPAD), used alongside a photon counter and
laser, is a cheaper and more practical alternative. A SPAD is a type of p-n junction that
responds electrically to incoming photons. It can be disabled for certain durations, thus
ignoring first-bounce light.

Given a pair of positions on the wall where the SPAD and laser are focused, the photon
counter generates a histogram of photon counts versus time (Fig. 10.18). By pointing the
laser and detector at various locations on a grid of points on the wall, we can gather the data
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Figure 10.18: Data Collection. Laser pulses bounce off a wall and hidden object to reach
a Single Photon Avalanche Diode (SPAD, left), and a photon counter produces a graph of
detector hits vs time.

we need to run a backprojection algorithm similar to the one discussed in Section 10.4.1.2
(Streak Cameras + Femtosecond Lasers):

• Model the hidden scene as a 3D grid of voxels.

• Create a confidence map from the set of photon counts N (t, xi, yi, xo, yo) – t for time,
(xi, yi) for laser coordinates, (xo, yo) for detector coordinates – to the set of voxels
V (x, y, z).

• Apply a Laplacian filter and threshold the results.

To accurately model and recover occlusions within hidden scene parts in non-line-of-sight
imaging, Heide et al. (2019) developed both image formation and inverse methods. The
non-linear factorization method proposed was validated in simulation as well as physical
measurements. The time-resolved imaging system built using an array of single photon
avalanche diodes and a picosecond laser, provided superior quality reconstructions com-
pared to other proposed methods.

10.4.1.3 ToF sensors for real world NLOS Imaging Commercial ToF Cameras

Commercial time-of-flight cameras can also be used alongside nanosecond lasers to image
hidden objects Heide et al. (2014c). This approach requires considerably cheaper hardware,
shortens the acquisition time of images and is more robust to ambient lighting compared
to methods using femtosecond lasers and streak cameras. Here, recovery of 3D shape of
the occluded object is posed as an inverse problem which is solved using an optimization
procedure supplied with appropriate structural priors on the data.
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Figure 10.19: Image/Camera Setup. By now, this picture should seem familiar: a relatively
cheaper laser and ToF camera (a) replace the faster lasers and expensive sensors of previous
sections, with the goal of more accessibly capturing the hidden scene (b) Heide et al.
(2014a).

Using commercial time-of-flight cameras, we can define the hidden scene as a set of
patches with certain heights and orientations, and assume a one-to-one mapping between
wall patches and camera pixels. Under these assumptions, the radiance L (w) at a wall patch
w given an emitted radiance Le (l) hitting a wall patch l can be derived from the rendering
equation:

L (w) = Le (l) ρ (w)
∫
V

g (x) v (x) dx,

where ρ (w) indicates diffuse albedo, V denotes the the volume of the hidden scene, and x
denotes the location of the hidden patches. Lastly, g, v are geometry terms correcting for
hidden patch location and albedo/orientation, which can be expressed as functions of the
positions and orientations of w, l, and x.

The above equations correspond to stationary light transport. To get to the transient version,
we incorporate time as a dimension, ensuring that we include only the light reflected off
the hidden scene. Since said light arrives at t = t0 + τ (x), where τ (x) is the total travel
time — the light arriving at the camera pixel c (corresponding to the wall patch w) can be
calculated as

L (c, t) =
T∫

0

Le (l, t0) ρ (w)
∫

V

δ (t0 + τ (x) − t) g (x) v (x) dx dt0.
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Representing the discrete hidden patch locations as v, the transient image as i, the light
transport matrix as T, and the correlation matrix corresponding to camera and image
modulation as C, the discrete version of this equation is:

h = Ci = CTv,

where h is the measurement from the ToF sensor. This equation can be expressed as an
optimization problem, and be solved using a modified version of the alternate direction
method of multipliers method (ADMM) augmented with several regularization priors:
that the spatial gradients are smooth, that the hidden patches are sparse, and that the
discretization results in each coordinate having at most one hidden patch. The priors can
be combined into a single regularization term (in the above order) as follows:

Γ (v) = λ
∑
z

��∇x,yvz
��

1 + θ ‖Wv‖1 + ω
∑
x,y

indC
(
vx,y

)
.

Heide et al. (2014a) demonstrated that this method recovers the shapes of cardboard letters
at a resolution of about 5 cm, depending on material. At the cost of a difficult optimization
problem, the paper demonstrates an approach that is more practical and deployable in real
world scenarios than using a streak camera to reconstruct 3D images of hidden scenes.
A novel density estimation technique was presented by Jarabo et al. (2014) that allowed
reusing sampled paths to reconstruct time-resolved radiance. Alongwith the introduction of
a formal framework for transient rendering, in order to factor in the distribution of radiance
along time in participating media, they also devised new sampling strategies.

Virtual Sensor Array

Much of the preceding work has been experimental in nature. Kadambi et al. (2016)
proposed a theoretical framework for ToF NLOS imaging by treating the intermediary
wall as a virtual sensor array (VSA) and establishing a model for the importance of wall
specularity by borrowing from the field of array signal processing.

The basic model considers a single occluded point light source. The phasor L representing
light transport from the light source to the diffuse wall can be written as

L (u, v) = cos θ
φ2
L (u, v)

e φL (u,v),

where (u, v) is the wall location, θ is the angle of incidence, and φL is the phase difference.
Similarly, the phasor C representing transport between the wall and the camera can be
written as

C (u, v,ψ) = ρ (u, v) cosψ
φ2
C
(u, v)

e φC (u,v),

where ρ is albedo, ψ is the angle of reflection, and φC again represents phase difference.
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Figure 10.20: Experimental Results. The reconstructed depth (left), albedo (center), and
hidden target (right) for both high (bottom) and low (top) ambient light Heide et al. (2014a).

Figure 10.21: Scene Geometry. The familiar image capture diagram (left) remains the
same, but here the hidden target is interpreted as a set of point sources (left) or reflectors
(right) and the wall itself is modeled as a sensor array (right) Kadambi et al. (2016).

Since the camera is focused on the wall by design, we can integrate across ψ to get the total
transport phasor M:

M (u, v) = A0L (u, v)
∫

C (u, v,ψ) dψ,
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where A0 is the original amplitude. If the wall has roughly uniform albedo, the amplitude
of C can be ignored and L can be approximated to L ′ as follows:

L (u, v) =
(

1
A0

) (
M (u, v)
C (u, v)

)
,

L ′ (u, v) =
(

1
A0

) (
M (u, v)
e φC (u,v)

)
=

cos θ
φ2
L (u, v)

e φL (u,v)
∫
ρ (u, v) cosψ

φ2
C
(u, v)

dψ,

where φC is known from scene geometry.

We now have an array of “sensors” L ′, each a phasor with an amplitude and phase, and want
the location of the original source. If we discretize the hidden scene as a grid of voxels, let
x ∈ CN be the vector containing the confidence that the source is at each one of these N
voxels and let y be our vector of measurements L ′, we can construct the matrix

D =
[
s (u1,w1) , s (u2,w2) , · · · , s

(
uR,wQ

) ]
,

where each column s (u,w) : (u,w) → CM represents the expected sensor measurements
(of which there are M in total) for each voxel. Finally, the result – y = Dx – can be solved
with either sparse solvers (assuming the number of target voxels is much less than the
number of total voxels) or beamforming, which approximates an answer with

x = DHy.

In addition to this model, we can also explore the relationship between wall specularity
and reconstruction accuracy Kadambi et al. (2016): again borrowing from array signal
processing, we can express the reconstruction resolution (FWHM∠) as

FWHM∠ = arcsin
(

fmγ∠

λ + dγ∠

)
,

where γ∠ represents how diffuse the “sensor” or wall is, fm corresponds to the modulation
frequency of the camera, and d is the diameter of the virtual sensor array. This represents
a nonlinear relationship between wall specularity and reconstruction accuracy, with very
poor theoretical bounds (1 m) on the resolution given very diffuse walls. Experiments
and data from the Mitsubishi Electric Research Labs BRDF database suggest that many
real-world materials are indeed specular enough for this form of ToF imaging to be effective
in practice Kadambi et al. (2016).

10.4.1.4 Recent Advances in ToF-Based NLOS Imaging Confocal NLOS

Many of the time-of-flight basedNLOS imagingmethods require extremely high processing
power and memory. In addition, the flux of multiply scattered light is low. Hence, data
needs to be acquired for long periods of time in dark environments. Confocal non-line-



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

388 Chapter 10 Light Transport

Figure 10.22: Confocal NLOS Setup. Confocal NLOS involves simultaneously imaging
and sensing the same point on a wall (a). For each point, photon counts are measured
versus time (b). These measurements are then combined into streak images (c) O’Toole
et al. (2018).

of-sight imaging (C-NLOS) seeks to solve this problem by aiding in the derivation of the
light-cone transform to reconstruct hidden scenes.

Instead of illuminating and capturing every possible pair of distinct points on a diffuser wall,
C-NLOS illuminates and captures the same point at one time, and then raster-scans10 this
point across the wall to obtain its transient image O’Toole et al. (2018). Points (x ′, y′) on
the diffuser wall are confocally scanned at z′ = 0. A 2D histogram of spatial and temporal
dimensions is measured at this point, as seen in Fig. 10.22b. The second spike corresponds
to 2 ∗ distance from the hidden object. Many such images are put together across the row to
form the streak image in Fig. 10.22c. τ, the final 3D volume of measurements is expressed
as:

τ (x ′, y′, t) =
∭

Ω

1
r4 ρ (x, y, z) δ

(
2
√
(x − x ′)2 + (y − y′)2 + z2 − tc

)
dx dy dz,

where c is the speed of light, ρ is the albedo of the hidden scene at the given point (x, y, z),
the Dirac delta function δ represents a 4D spatio-temporal cone that models the propagation
of light from the wall to the object and back to the wall. Using change of variables and
substitution, the above integral can be transformed into a 3D convolution expression

Rt {τ} (x ′, y′, v) = Rz{ρ} (x, y,u) h (x′ − x, y′ − y, v − u) ,

10Raster scanning is a technique where the laser is pointed sequentially at every point in the row, for each
successive row, thus effectively traversing every point on the wall.
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Figure 10.23: Object reconstruction. The steps of the reconstruction algorithm match the
components of the convolution: attenuation in time ((a) - (b)), Wiener filtering ((b) - (c)),
and attenuation in space ((c) - (d)) O’Toole et al. (2018).

where Rt {τ} is τ multiplied with a constant, Rz{ρ} is a function of ρ, and h is a shift-
invariant transformation of the 3D solution kernel. The inverses of Rz , Rt both have closed
form solutions.

The discrete version of image formation can be represented by Rtτ = HRzρ where τ is the
vector form of the measurements, ρ is the vector form of the albedos, and H represents the
3D shift invariant convolution operation. Rz is the transformation on the spatial domain
and Rt is the transformation on the temporal domain. Since both these matrices operate
independently, C-NLOS is both memory and power efficient.

We have now translated NLOS to a 3D deconvolution problem, and we can derive the
closed form solution. Based on the Wiener filtering method, the final geometry of the
hidden scene is recovered as seen in Fig. 10.23.

BecauseC-NLOS involves lesser data collection, and simpler processing due to independent
spatial and temporal dimensions, it is computationally simpler. It can hence be applied in
real-time NLOS tracking of a hidden scene.

Non-visual NLOS

Most of the optical time-of-flight methods seen so far require specialized ToF cameras and
fast lasers. In addition, visible light signals for diffuse hidden elements fall off quickly,
resulting in higher data acquisition time, and often failure to uncover objects that are farther
away. One of the ways to overcome these issues is using higher wavelength signals like
radio and sound waves for NLOS. Walls have specular (mirror-like) properties for sound
and RADAR waves, and hence hidden scenes are revealed more easily than in the optical
case. NLOS using sound employs off-the-shelf hardware like microphones and speakers,
and is therefore more accessible. The acoustic NLOS setup is demonstrated in Fig. 10.24.

A virtual hidden object is formed behind the wall in acoustic NLOS due to the specular
reflection of acoustic waves. The received signal is a delayed version of the transmitted
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Figure 10.24: Acoustic NLOS.With sound, walls act in a much more specular manner than
they do with light, which results in a clearer virtual object (left). This can be quantified
by measuring the time delay of the return signal (upper right), then conducting a Fourier
analysis (lower right) Lindell et al. (2019).

signal, and after undergoing Fourier transformation, these signals produce a sharp peak at a
frequency proportional to the distance of the reflecting object. The wavefield for this model
is given by a 5D function:

τ (xt, yt, xr , yr , t)

where xt , yt are the spatial positions of the transmitter (speaker) and xr , yr are the spatial
positions of the receiver (microphone), and t is the time. For the signal transmitted from
(xt, yt, z = 0), a response is recorded at (xr , yr , z = 0). After reductions in the Fourier
domain, the pre-processed measurements can be approximated as functions of the spatially
varying albedo of the hidden object and the acoustic BRDF.

There are two methods to capture such images. In the Confocal method that is analogous
to O’toole’s optical confocal imaging method, xt = xr , yt = yr . In this case, a closed
form solution can be developed for the reconstruction of the hidden scene. However, in
the case of non-confocal measurements, there is a significantly larger amount of data in
comparison, which also leads to better image resolution. This requires separate processing
due to the additional potential specular reflections returning outside of the confocal receiver
positions. The non-confocal measurements are adjusted to emulate confocal measurements.
This computational adjustment employsmethods such asNMO(normalmoveout) andDMO
(dip moveout) corrections inspired by seismic imaging. The image is then reconstructed
through deconvolution: the results (compared to O’Toole’s optical confocal reconstruction)
can be seen in Fig. 10.25.
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Figure 10.25: Comparing Acoustic and Visual NLOS Imaging. The acoustic method
(right) reproduces the L in the hidden scene (left), whereas the visual method does not
(center) Lindell et al. (2019).

Scheiner et al. (2020) provides a method for the NLOS using radio waves using a Doppler
RADAR. The setup uses a colocated emitter and receiver array (analogous to laser and
camera for the optical case) to identify moving targets in the hidden scene, taking advantage
of the increased specularity of many real-world surfaces.

The end result is a set of feature points in (distance, radial velocity, angle, amplitude)
space that are then fed into a neural network to detect and track features. The approach
successfully identifies bicycles and pedestrians outside of line-of-sight. We refer the reader
to Scheiner et al. (2020) for details of how one can recover distance, radial velocity, and
angular position of the hidden object by analyzing the received signal.

Fermat Paths for ToF Imaging

In order to extend the scope of transient NLOS imaging beyond Lambertian approximations
and intensity constraints, we can approach the problem with a geometric intuition.

This is done by exclusively analyzing Fermat light paths (in the context of Fermat’s princi-
ple), which are light paths that are locally longest or locally shortest. Additionally, Fermat
light paths can be classified as light paths that are reflected by the object of interest in
either a specular fashion or at boundary locations (Fig. 10.27). Using a collocated emitter
and detector, Fermat paths can be detected by locating points of discontinuity along the
transient curve.

Fermat paths have a number of useful properties that can be applied to NLOS object
reconstruction. First, we note that these paths are invariant with respect to the BRDF of the
surfaces involved. Assuming our Fermat path, reflected from a wall at v, specularly strikes
the hidden object of interest at some point xF ,1 and the boundary at some point xF ,2. We
can construct a sphere S around the the point v, with radius r = τF (v)

2 where τF (v) is the
length of the Fermat path, relative to v.
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Figure 10.26: Doppler RADAR NLOS. Using radar, like using sound, means that various
real-world surfaces become more specular. Like in the previous section on acoustic NLOS,
radar reflections are captured by an array of receivers positioned at the same location as the
transmitter and the outgoing and incoming signals are mixed. We can recover information
about distance, velocity, and angle from the received signal Scheiner et al. (2020).

Furthermore, Fermat’s Flow Constraint, dictates that the direction of the light path between
xF and v is parallel to ∇vτF (v), where ∇v is the spatial gradient operator. This operator
can be measured by perturbing the incident light emitter slightly, and measuring the degree
to which the length of the Fermat path changes. According to the Fermat Flow Constraint,
if we know the length of the Fermat path, and its gradient, we can reconstruct the point on
the NLOS surface by intersecting the sphere S, with a line that is parallel to the gradient
and passes through v. Using this geometric technique, we can generate a point cloud of the
hidden surface . This point cloud can then be supplied to common surface reconstruction
algorithms to create a uniform surface. This method can also be extended to surface
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Figure 10.27: Fermat Paths. (a) Experimental results for the reconstruction (right) of
hidden topologies (left). The objects on the left were 3D-printed from ground truth meshes
(center), on top of which various reconstruction points (red) are overlaid. This is the
reconstruction of a paraboloid object. (b) This is the reconstruction of the sigmoid object.
(c) Transient light (as measured with a photon counter) exhibits discontinuities at Fermat
pathlengths, which correspond to significant features on the hidden surfaceXin et al. (2019).
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Figure 10.28: Hidden Objects and Shadows. In the presence of an occluding wall, objects
hidden from the camera still influence the colors in the shadows cast by the wall (left).
Observations at a given angle from the wall (upper right) include light from only a portion
of the background, resulting in a transfer matrix something like (bottom right) Bouman
et al. (2017).

reconstruction for an object that is in the line of sight, but is between a heavy diffuser (such
as a sheet of paper).

The reconstruction (as displayed in Fig. 10.27a-b) is accurate to about 2 millimeters when
compared with the ground truth. This geometric approach offers a novel perspective with
which to tackle the NLOS problem, and can potentially be complemented with intensi-
ty/BRDF data to create an even more optimal solution Xin et al. (2019).

10.4.2 Intensity based methods
Turning Corners Into Cameras

The previous sections described a variety of approaches to NLOS that largely rely on
the time-of-flight principle, making use of fast lasers and ToF cameras to obtain accurate
temporal measurements of photon arrival times. However, we can instead use intensity and
color of the observed scene for NLOS Bouman et al. (2017). The approach leverages the
fact that objects moving behind a corner (e.g., the edge of an occluding wall) will result
in reflection patterns on the ground in front of the corner which depend on the angular
position of the objects.
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While most NLOS approaches have traditionally used a vertical surface to reflect light off
the hidden scene, this approach makes use of the ground (a horizontal surface). The camera
is placed on one side of the occluding wall looking at the ground parallel to the wall, so
light on the same side of the wall as the camera comprises the visible scene while light on
the opposing side comprises the hidden scene. The light from a hidden object cannot reach
the camera directly, but does hit the region on the ground not blocked by the wall.

The size of this region depends on the angular coordinates of said object within the hidden
scene. Under the assumption that 1) the ground is Lambertian and 2) incoming light can be
assumed to originate from a distant celestial sphere, the reflected light L ′

o from point (r, θ)
on the ground can be expressed as

L ′
o (r, θ) = a (r, θ)

∫ 2π

α=0

∫ π/2

δ=0
γL ′

i (α, δ) dα dδ,

where L ′
i (α, δ) denotes incoming light at the ascension and declination (α, δ), a (r, θ)

denotes albedo, and γ is the dot product of the incident ray and the surface normal.

Note that α ∈ (0, π) is the visible scene, α ∈ (π,2π) is the hidden scene, and light from
α ∈ (π + θ,2π) will be blocked by the occluding wall from reaching the ground. Therefore

L ′
o (r, θ) = a (r, θ)

[
Lv +

∫ θ

φ=0
Lh (φ) dφ

]
, (10.3)

where Lv corresponds to the visible scene and is constant in (r, θ) and

Lh (φ) =
∫ π/2

δ=0
γL ′

i (π + φ, δ) dδ.

Under the assumption that a (r, θ) is largely constant (or if one subtracts out the background),
(10.3) can be differentiated to establish a relationship between observed light and the
angular change in lighting from a hidden object. We can then use spatial smoothness and a
maximum a posteriori (MAP) optimization to obtain the angular projection from observed
image intensities.

Using only commercial video cameras, Bouman et al. (2017) demonstrated recovery of the
angular motion of two people wearing red and blue shirts walking around within the hidden
scene. Note that while this method only provides 1D angular information, two corners (or
wall edges) — such as a doorway — effectively produces a stereo imaging system. The
angles from each corner can then be used to triangulate a 2D position.

Polarization Cues to Supplement NLOS Imaging

As with many other imaging techniques discussed in previous chapters, polarization can be
instrumental in optimizing NLOS imaging as well. In passive NLOS imaging, if a camera
is aimed at a wall patch that is reflecting the hidden object, the fundamental least squares
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Figure 10.29: Motion from Shadows. The color-augmented (d) version of the shadow (c)
demonstrates the concept in Fig. 10.28. This enables a reconstruction (e) of the motion of
colored objects – or, in this case, people (b) Bouman et al. (2017).

Figure 10.30: Polarized NLOS. The effective polarization axis of a polarizer changes based
on viewing angle ((c) - (d)), as demonstrated by the polarizer placed on top of a monitor
((a) - (b)). This occurs even when two polarizers are placed at 90° angles (e). (f) Light
from a projector (top row) is captured by a camera placed at the Brewster angle with respect
to the screen (top). Placing a polarizer in front of the camera leads to better results (bottom
row) than without (center row) Tanaka et al. (2020).

equation to be solved is
Î = T+i,

where Î is the array of estimated reflected scene intensities, T+ is the pseudo-inverse of the
light transport matrix, and i is the array of incoming intensities, recorded by the camera.
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Figure 10.31: Periscopy NLOS. (a) The classic NLOS setup, replete with occluder, hidden
object, light source, and sensor. (b) The results of the reconstruction algorithm (right) on
various scenes (left), with the raw camera image in the center Murray-bruce et al. (2019).

Polarization cues can be used to “condition” the light transportmatrix, in order to get a better
estimate of the scene intensities. Polarizers have a property called the “effective angle”,
where if a light ray strikes even a crossed polarizer obliquely, light is leaked (Fig. 10.30).

When the camera is placed so that the incoming light has been reflected near Brewster’s
angle, the light becomes almost linearly polarized. This causes a light leakage pattern
that can be incorporated into the light transport matrix, in order to further condition it.
Consequently, this method becomes a viable supplement to alternate methods of NLOS
imaging that have already been discussed Tanaka et al. (2020).

Computational Periscopy

Inspiration can also be taken from the workings of a periscope and applied to the NLOS
problem, by treating the reflecting wall as a mirror in a periscope system. To achieve this
end, an ordinary digital camera and passive imaging is sufficient.

The primary equation that encapsulates this situation is

y = T (θocc) f + b,

where y is the vectorized array of camera pixels, T (θocc) is the light transport matrix given
a parametrization θocc of the occluded object, f is the vectorized array of scene pixels, and
b is the array of background contributions. Assuming that there is an opaque occluder of a
known shape – but arbitrary position – in front of the hidden scene, the created penumbra
can provide us with unique columns of T and thus a well conditioned recovery of f.

An important aspect of this procedure is the computational field of view – a set of points
on the hidden scene where the shadows cast by the occluder provide enough variability,
and do not completely obscure the field of view of the camera. f and θocc can be solved
by using computational inversion with a two step algorithm. First, solve for θocc by using
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an estimated (poorly conditioned) light transport matrix, T (θocc) built by assuming an
unknown θocc. This nonlinear optimization can be expressed as

θ̂occ = arg max
θocc

���T (θocc)
(
T (θocc)� T (θocc)

)−1 T (θocc)� y
���

2

2

Second, use the estimated occluder parameterization to compute the well conditioned light
transport matrixT

(
θ̂occ

)
. With this information the hidden scene’s RGB content can finally

be computed as

f =
(
T
(
θ̂occ

)�
T
(
θ̂occ

))−1
T
(
θ̂occ

)�
y.

Note that in the case of excessive unknown background b, its contributions to the captured
image y need to be cancelled out. This can be done by realizing that light originating from
outside the computational field of view has minimal variation across space, and thus the
neighboring background values are approximately equal.

After performing the post-processing as needed, a successful reconstruction image of the
object has been accomplished Saunders et al. (2019). To tackle the task of tracking an
object placed around a corner, without using the time-of-flight technology, Klein et al.
(2016) proposed the usage of 2D intensity images. This was accomplished by devising an
optimization framework based on an unsophisticated imaging model using a laser pointer
as the light source. The next section looks at some more challenging imaging problems
that can be solved using light transport.

10.5 Applications

10.5.1 Applications in ToF Imaging
Multi-path interference correction for Time-of-Flight Imaging

Time-of-flight systems, as discussed in 5.4.2 are increasingly being incorporated into
everyday products. However, the noise in real world environments creates many sources
of errors for a ToF camera which need to be corrected for. One such source of error is
multipath interference.

This occurs when multiple light rays converge onto the same pixel in the camera sensor,
as shown in Fig. 10.32. This causes errors in ToF imaging systems which assume single
optical reflection. This is because the estimated depth that is calculated through continuous
ToF imaging hinges on the computed phase delay, in the relationship

z =
cφ

4π fm
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Figure 10.32: Multipath Interference in ToF Imaging. (a) An example of ToF where a
single light ray is emitted and captured after striking the scene surface at point p. (b)
Here, a different light ray strikes the scene at point p after being reflected from q and also
reaches the same sensor as the first light ray. This introduces interference in the ToF sensor
computations. (c) Partial subsurface scattering of a light ray results in multiple light races
reaching the ToF sensor. (d) The first shape is the measured ground truth. The second
shape is the error for the generated depth map using classical ToF imaging. Finally, we have
the error of the depth map constructed using light transport optimization to lower noise.
The corrected error is markedly lower than the original error Naik et al. (2015).

where z is the depth, φ is the phase delay, c is the speed of light, and fm is the modulation
frequency of the camera. This phase delay is calculated by cross correlating the emitted
and detected signal Naik et al. (2015). Light transport techniques discussed in the previous
sections can serve to alleviate the problem of inaccurate phase delay computations, by
separating the detected signal into its direct and global components.
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(a)

(b)

Figure 10.33: Epipolar ToF Imaging. (a) In epipolar imaging, one row is imaged at a time,
using a laser sheet. (b) Epipolar ToF imaging improves the depth measurements for even
bright light bulbs. The errors caused by the surface reflectance of the light is suppressed in
epipolar imaging Achar et al. (2017).

Using this separation, we can generate a closed form solution for a more accurate phase
angle. In this manner, light transport complements ToF imaging by offering more control
over its environmental influences.

Epipolar Time-of-flight for MPI Correction

As discussed in the previous sections, continuous wave time-of-flight imaging methods
provide accurate depth reconstructions but are often constrained by various assumptions.
Incorporating epipolar geometry can help alleviate these disadvantages. Classic CW-ToF
is very energy intensive especially in outdoor settings, with bright ambient light. Compar-
atively, epipolar imaging converges the emitted light onto a single sheet, which increases
its range threshold. Epipolar imaging also circumvents the problem of excessive global
illumination interference, by blocking most global illumination prior to image capture.
Epipolar ToF framework is also more effective at handling motion in a scene compared to
regular CW-ToF, which suffers from corruption of depth reconstruction since its multiple
input frames vary in time.

In the context of ToF, epipolar geometry is used to acquire strips of the image scene,
sequentially. At a time, a sheet of laser light is projected onto the scene and is eventually
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Figure 10.34: Epipolar Scene Sampling. (a) Capturing epipolar planes over time, like
a rolling shutter camera. This reduces the effect of time varying motion blur, global
illumination, and ambient on the image. (b) We can trade vertical resolution for higher
temporal sampling by capturing every other epipolar plane. c) Further optimization can be
done for specific situations, by selectively increasing temporal resolution in different parts
of the image Achar et al. (2017).

captured by a camerawith only the corresponding epipolar rowof pixels active (Fig. 10.33a).
Note that the row of camera pixels and the laser sheet are focused on the same scene location.
Since CW-ToF requires two images to recover depth, there is some freedom to choose the
order in which the epipolar planes are sampled.

The optimal method for image acquisition is to capture the set of modulations for a single
row together, so that blur artifacts due to external motion are minimized (Fig. 10.34a).
We can further optimize this by capturing the planes in a sawtooth manner to decrease
misalignment of rows across an image, at the expense of vertical resolution (Fig. 10.34b).
In certain applications such as ToF on a car, it may be better to have higher temporal
resolution lower in the image, since lower portions of the field of view are moving faster
(like the road) (Fig. 10.34c).

There’s marked improvement in epipolar ToF with regards to global illumination and
interreflections, as shown in (Fig. 10.33b). This method of ToF bridges the gap between
improving the various situational performance deficiencies of CW-ToF, while requiring less
data collection than the point-by-point depth recovery of LIDAR.

10.5.2 Skin Imaging
Modeling the light transport in human skin has always been a problem of relevance for
the imaging and graphics community. Human skin is composed of multiple layers with
different optical behaviour, making it challenging to see through the skin or even render
its appearance. A first step towards understanding light transport in human skin is to
familiarize ourselves with skin anatomy. The three skin layers - epidermis, dermis, and
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subcutis are important from a graphics and imaging perspective. The optical behaviour of
the skin is governed by the unique optical behaviour of each of these layers.

The epidermis, which is the outermost layer of the skin, is a transparent medium. It is
followed by dermis, which is a semi-opaque or turbid medium.The subcutis, which is
beneath the dermal layer consists of fat cells. Non-invasive imaging of the dermal and
subdermal layers of human skin is an important challenge for the medical community.
Light undergoes a variety of optical phenomena such as interreflections, scattering and
selective absorption while passing through these layers.

To understand the optical behavior of skin, the community focuses largely on two pigments
– melanin, the pigment responsible for skin color and hemoglobin, the pigment that binds
with oxygen in blood. Melanin is found in the epidermis and is responsible for the skin tone
of a person. Higher concentrations of melanin result in darker skin tones. Hemoglobin is
found in the dermal tissues.These two pigments are of importance since the absorption of
light in the skin is largely dominated by melanin and hemoglobin compared to all other
pigments combined. Deoxyhemoglobin, oxyhemoglobin, andmelanin each have a different
wavelength or frequency of light which they absorb maximally; both of them preferentially
absorb light at shorter wavelengths. Melanin also has a markedly high refractive index
compared to all other cellular level elements. As a result, when light hits the skin it is
absorbed by melanin in the epidermis, with minimal scattering; within the dermis, the light
is scattered by collagen fibers and eventually absorbed by hemoglobin. As a result, the
volume of melanin in a person’s skin changes drastically the optical behavior observed,
and the level of absorption. This results in a dependence of skin color on the performance
of skin imaging systems, thus creating a melanin dependent bias that should be accounted
for. The spectral reflectance of different skin colors heavily depends on the absorption
characteristics of melanin and hemoglobin (as well as carotene, which we will not discuss
here). By extracting information about the melanin and hemoglobin contents of skin, it
is possible to create photos where a person has been aged downwards by several decades,
among other things.

Using quantitative scattering and absorption parameters, we can develop models for light
transport within the skin. There have been many different proposed models, ranging from
the Lambert-Beer law, where we are assuming almost no scattering and an exponential
attenuation due to absorption; a modified Lambert-Beer model assuming light transport
within a highly scattering medium; the Monte Carlo simulation for skin with a com-
plex multi-layered structure, particularly useful for modeling light transport in tissues, as
well as the Kubelka-Munk theory for modeling light transport in tissues. Looking at the
bidirectional reflectance distribution function (BRDF) and bidirectional surface scattering
reflectance distribution function (BSSRDF) can also be useful in modeling the appearance
of skin under different illuminations and in different viewing conditions.
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Researchers have been looking at not only understanding light transport within skin, but
to also develop subsurface imaging systems for human skin. Using high frequency coded
illumination patterns, asmentioned earlier in this chapter, it is possible to separate direct and
global components of light; combining this with a multispectral sparsity-based approach
enables us to look past the skin and see the veins and tissues beneath as depicted in
Fig. 10.35c. The key idea here is that spectral decomposition can be used to enhance
certain components - for example, veins. The next step is to then separate the global
and direct components of the enhanced skin parts. For example, the scattering (global)
component can yield an image of the tissues beneath the skin.

Some other skin imaging techniques include using a layered heterogeneous reflectance
model to render a realistic human hand Donner et al. (2008). This method pays special
attention to inter-scattering between different skin layers. By taking into account the
absorption presented by the melanin in the epidermis and hemoglobin in the dermis, it is
possible to not only create a realistic rendering of human skin, but also to render what that
skin would look like if, for example, a person clenches their fist, resulting in temporary loss
of blood flow to parts of the hand and a resultant lack of hemoglobin in those areas.

The complexity of human skin and handling multiple optical phenomena like scattering,
absorption, interreflections make skin imaging a challenging problem. However, light
transport in human skin is governed by the same principles we studied earlier in this
chapter. We have seen that there are many promising models, as well as promising results -
whether it is in rendering photorealistic images of skin or in actively performing subsurface
imaging using the methods described above. Skin imaging is a field of great importance
now, owing to the increasing focus on virtual reality and telehealth.

10.5.3 Imaging through Scattering Media
The focus of this chapter was to introduce the light transport formulation. The formula-
tion can also be used for imaging through scattering media. Imaging through scattering
media finds applications in a variety of critical tasks like biomedical imaging, underwater
exploration, and improved transportation systems in challenging weather. Scattering of
light from particles contributes to the global light paths emerging from the scenes. Early
works in this area focused on using spatial light modulators (SLMs) for wavefront shaping
for de-scattering Katz et al. (2011). The techniques we studied throughout this chapter are
also shown effective for this approach.

Katz et al. (2012) introduced wavefront-shaping and established its ability to facilitate wide-
field imaging across turbid layers with incoherent illumination, and imaging of occluded
objects using light scattered from diffuse walls. Interestingly, this approach did not require
raster-scanning, coherent sources, off-line reconstruction, or interferometric detection. Katz
et al. (2014a) showed that, a single high-resolution image of the scattered light, taken with a
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standard camera, encodes sufficient data due to the memory-effect for speckle correlations.
This information was shown to be adequate enough to image around visually obscure layers
and around corners with diffraction-constrained resolution. Chaigne et al. (2014), paved the
path towards deep-tissue imaging and light delivery utilizing endogenous optical contrast
by combining transmission-matrix approach with the advantages of photoacoustic imaging.
Their approach allowed the non-invasive measurement of an optical transmission matrix
over a large volume, inside complex samples, using a standard photoacoustic imaging
set-up. Optical nonlinearities were exploited to form a diffraction-limited focus inside or
through a complex sample, even when the feedback signal is not localized by Katz et al.
(2014b). This system enabled imaging through strongly scattering turbid and visually
opaque layers.

The idea of global and direct separation in combination with confocal imaging has also
been applied to this problem, as shown in Fig. 10.36, and the skin imaging section we saw
earlier. Hebden et al. (1991), Satat et al. (2016) have demonstrated the use of transient
imaging and SPAD sensors for seeing through scattering media. Satat et al. (2018a) showed
a technique for imaging through highly scattering media with a SPAD camera in optical
reflection mode. One of the advantages of this method was the recovery of multiple
targets at different scattering levels. Due to their superior noise performance in low lighting
conditions, SPAD could be a good choice for imaging through volumetric scattering. These
approaches are promising and achieved success on small scale experimental settings, but
are still miles away from developing systems that can be deployed on a self driving car to
perfectly see through fog.

Chapter Appendix: Notations

Notation Description

I Scene

S Source

P Sensor (e.g., Camera)

T Light transport matrix

p Irradiance measurements / Camera pixels

l Independent source / Illumination Pixels

I Captured image

Ii Image containing ith order inter-reflections

ω
y
x Rays originating from x and directed to y

Lin
(
ω

y
x
)

Radiance as a function of all incident light rays ωy
x

Lout
(
ω

y
x
)

Radiance as a function of all outgoing light rays ωy
x
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Li
in, Li

out Component due to ith inter-reflection (i = 1 constitutes direct, and i > 1 constitutes
indirect component)

E Identity matrix

A Matrix characterizing proportion of irradiance

C1 Cancellation matrix

T1 Components of T due to 1-bounce reflections

Ld Direct component

Lg Global component

L [c, i] Radiance of a patch i measured by a camera c

P Set of patches in the scene

A [i, j] Reflectance distribution over the patch [i, j]
Lgd Direct component of radiation from scene patches

Lgg Global component of radiation from scene patches

L+ Image of the scene lit with high frequency illumination

L− Image of the scene lit with a complementary illumination

b Brightness of the deactivated source as a fraction of the activated element

bmat Matrix that stores the value of b for each pixel

Π Probing matrix

1 Vector of all ones

� Element-wise product

{pk } Set of rank-1 matrix of illumination patterns

{mk } Set of rank-1 matrix of masks for optical probing

TD Transport matrix of direct image

TEl Transport matrix of epipolar indirect image

TNE Transport matrix of non-epipolar indirect

Tτ Light transport matrix with path length τ

M Binary matrix

ω (τ) Binary function of path length τ

dr Distance between reference arm and the beamsplitter

ds Distance between the target mirror and the beamsplitter

ε Measurement noise

I (x, y) Light intensity at pixel location (x, y)
I (x, y, t) Light intensity at pixel location (x, y) and time t

STIR (xi , yi , θi ,Φi , t) Space Time Impulse Response (STIR) for sensor pixel (xi , yi ), direction of ray
(θi ,Φi ), and time t

Oi Set of ith onsets (i.e., collection of time instants)
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D Matrix of pairwise Euclidean distances between all patches

d Vectorized vec version of D

c Speed of light

dH Distances to the hidden patches

Oh Arrival times corresponding to hidden patches

L (w) Radiance at wall patch w

Le (l) Emitted radiance hitting a wall patch l

ρ Diffuse albedo/orientation

V Volume of the hidden scene

g (x) Geometry term correcting for hidden patch location and albedo/orientation

v (x) Geometry term correcting for hidden patch location and albedo/orientation

τ (x) Total travel time

v Discrete hidden patch locations

i Transient image

C Correlation matrix corresponding to camera and image modulation

h Measurement from the ToF sensor

Γ (v) Regularization term

φL , φC Phase difference

ψ Angle of reflection

C (u, v, ψ) Phasor representing transport between the wall and the camera

M (u, v) Total transport phasor

FWHM∠ Reconstruction resolution

γ∠ Diffusivity of sensor/wall

fm Modulation frequency of the camera

τ (x′, y′, t) Final 3D volume of measurements

Rt Transformation on the temporal domain

Rz Transformation on the spatial domain

H 3D shift invariant convolution operation

τF (v) Length of the Fermat path relative to v

∇v Spatial gradient operator

a (r , θ) Albedo at point (r , θ)
θocc Occluded object
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Exercises

For the computations in this exercise, you may find these vector derivatives helpful.

∇x
[
xTA

]
= A

∇x
[
xT c

]
= c

∇x
[
xTx

]
= 2x

∇x
[
xTAx

]
= 2Ax

1. Review of Core Concepts.

a) Consider the pinhole camera. When the camera aperture decreases in size, what
happens to the image? (Full credit will mention one effect in the context of ray optics
and one effect in the context of wave optics).

b) Describe the plenoptic equation. You do not need to write the full equation, but
please offer a qualitative interpretation.

c) Provide the name of an algorithm to rigidly register 3D point clouds

d) Write a regularized optimization program that deblurs an image, such that the de-
blurred result is piecewise smooth. In other words, the program should aim to smooth
out noise, while retaining sharp edges. (Hint, look at Question 3 for an example of
how the instructors formatted a regularized optimization program).

2. Deblurring without Regularization.

You are designing a deblurring algorithm for an imaging system. Let x ∈ RN be a
vectorized ground truth image and y ∈ RM be a vectorized measured image. The
process can be modeled as an LSI system:

x −→ H −→ y,

which in matrix-vector form is y = Hx. Our goal is to recover an estimate of the ground
truth image, x̂. Since H is not necessarily square, we will appeal to the notion of
a pseudoinverse. In this two-part question, we will first pose this as an optimization
program tominimize the least squares error, for whichwewill find a closed-form solution
to x̂. If done correctly, this closed-form solution should converge to the pseudoinverse.

a) Formulate a least squares optimization program for finding x̂. It is not necessary to
solve the program in this part.
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b) Solve the optimization program by finding the closed form solution to x̂. Please show
your work for the closed-form derivation (use the back of this page if you need space).
For a cheatsheet of vector derivatives, see the last page.

3. Tikhonov Regularization.

Many inverse problems in imaging are ill-posed and cannot be solved with a simple
pseudoinverse. Hence, one appeals to the notion of regularization, where additional
information is used to prevent overfitting. In computer vision and imaging, this additional
information manifests as a regularized constraint in the optimization program.

One regularization approach is known as Tikhonov regularization. Alternate names
for this formulation are ridge regression (statistics community) or shrinkage (machine
learning community). Consider the deblurring example from Question 2. As compared
to the least squares solution, the idea is to solve an optimization program of the form:

(P1): x̂ = arg min
x

‖y − Hx‖2
2 + ‖Γx‖2

2, (10.1)

where Γ is a matrix that controls the type of regularization. For example, if Γ is the
identity matrix, then we are directly shrinking the values of x. However, if Γ is an
operator that computes the gradients of x, then we are looking for a smooth solution.

a) Find the closed form solution to x̂ for program (P1). Write only the solution in the
box below, using the back of the page to show your work.

b) Consider the �1 norm, where ‖a‖1 =
∑

i |ai |. We can replace the �2 norm in the
regularization term with an �1 norm, yielding:

(P2): x̂ = arg min
x

‖y − Hx‖2
2 + ‖Γx‖1, (10.2)

Suppose Γ is assumed to be I. Compare and contrast the estimate x̂ from program
(P1), (P2), and the unregularized solution (i.e. ordinary least squares). Hint: a full
credit answer will distinguish the nuances in the solution from programs P1 and P2.

4. Separating Light Transport.

This question will draw from the SIGGRAPH paper "Fast separation of direct and global
components of a scene using high frequency illumination" by S Nayar, G Krishnan, M
Grossberg, and R Raskar.

a) Draw an experimental configuration to separate components of light transport using
Nayar’s method. Prepare a list of parts, and write psuedocode to compute the
separation. (Hint: the basic idea of Nayar et al’s work is to interpret global light
transport as a low spatial frequency phenomena, and direct light transport as a high
spatial frequency phenomena.)
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b) Imagine you are working at a self-driving car company where your engineering team
is encountering a problem. Shiny objects in the scene (like oil slicks or shopwindows)
act as secondary reflectors for car headlamps. Your computer vision algorithms are
misidentifying these confounding reflections as cars. Meanwhile, the company sends
you to SIGGRAPH - as they do every year - where you see the Nayar et al. paper on
global/direct separation. On the flight back, you are considering tech transfer to your
company to solve the problem noted above.

Assuming that the prototype in Nayar’s paper can be streamlined (e.g. real-time
performance, size, weight, etc), should you engage in tech transfer to solve this
problem? Provide justification as per why or why not.
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(a) (b)

(c)

Figure 10.35: Optical Behavior of Skin. In (a), an RGB projector displays a green pattern
on a hand, which is captured by a monochrome camera. In (b), we see the isolation of the
veins and separation of global and direct components using the RGB and infrared spectra
Kadambi et al. (2013). (c) The epidermis, dermis, and subcutis skin layers each have their
own unique optical behavior based on their specific structure Igarashi et al. (2007).
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Figure 10.36: Confocal Imaging and Descattering. (a) Scene with objects in a 3D fish
tank. (b) Original image of fish tank filled with diluted milk.(c) Partially descattered using
confocal imaging. (d) Additional optimization removes more global scattering. (e) The
recovered 3D structure is visualized for a different view Fuchs et al. (2008).
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Glossary

Aberration It is a property of lenses that makes light spread out over some region of space instead of being
focused to a point. An example is the chromatic aberration, also called dispersion, which causes
light rays of different wavelengths to focus at variable distances form the lens. Using a 3rd order
approximation of the sine function, up to 5 different types of aberration can be identified.

Active
Illumination

Active illumination is an engineered source of light in a scene. This type of illumination is
either used to artificially brighten a dark room, or to encode spatial, temporal, or frequency
information into the image measurement process. It differs from passive illumination, which is
the ambient illumination already present in a scene.

Aliasing It represents an image distortion caused by a low sampling rate acquisition. According to
Shannon’s sampling theory, the acquisition rate should be twice the highest frequency in the
image. Aliasing can be prevented by low pass filtering the image before sampling.

Arnoldi
Iteration

Arnoldi iteration is an iterative eigenvalue algorithm. Arnoldi finds an approximation to the
eigenvalues and eigenvectors of general matrices by constructing an orthonormal basis of the
Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
The Arnoldi method gives a partial result after a small number of iterations, in contrast to direct
methods which must complete all iterations to give useful results.

Augmented
Reality

Augmented reality (AR) is an interactive experience of a real-world environment where the
objects that reside in the real world are enhanced by computer-generated perceptual information,
sometimes across multiple sensory modalities. The AR system fulfills three basic features: a
combination of real and virtual worlds, real-time interaction, and accurate 3D registration of
both virtual and real objects.

Bidirectional
Reflectance
Distribution
Function

Bidirectional Reflectance Distribution Function (BRDF) is a general reflectance model used
to describe the proportion of light reflecting in a certain direction, given the direction of the
incoming light. It is a function of four angles (two for incident light, two for reflected light) and
can take on values from 0 to 1. The BRDF is typically dependent on the illumination conditions
of a scene, as well as the material properties of the object of interest.

Color Filter
Array

A color filter array is placed in front of a sensor to obtain color/spectral information from a
scene. Each filter has a specific (and known) spectral sensitivity, selectively allowing only
certain wavelengths to pass freely. The most well known such filter is the ubiquitous Bayer
filter.

Colorimetry Colorimetry is the mathematical and psychological study of color. Retinal color discusses the
manner in which humans perceive color, specifically RGB vision due to the L-, M-, and S-cones.
Perceptual color is related to human adaptations to illumination and context cues, e.g. color
constancy.
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Compressive
Imaging

Compressive imaging is an image processing technique to efficiently capture an image with a
reduced number of samples. This allows recovering a higher resolution image of the scene, by
solving an ill-conditioned linear system. The method achieves good results assuming that the
initial image is sparse, i.e., it can be expressed using a low number of samples in a different
base.

Cross-
Polarization

Cross-polarization is defined as the angle of polarization orthogonal to the polarization state of
interest. In cross-polarization imaging, a polarizer is placed in front of the camera aperture at
an angle orthogonal to the glare polarization, enabling the removal of glare from photographs.

Dappled
Photography

Dappled photography is a new imaging method that uses an attenuation mask to capture the
light field in the scene. For example, by placing a high frequency sinusoidal mask between the
sensor and the optical elements of a camera, a wider region of the light field in the scene can be
captured with one single shot of the camera.

Deblurring It is the process of eliminating the artifacts caused by blurring in an image. Blurring can have
various causes. For example, motion blur is likely to appear when capturing fast objects in
motion. This can be solved by a technique called "fluttered shutter", which opens/closes the
camera shutter very quickly in a predefined pattern.

Demosaicing Typically the sensors in modern cameras are coded such that each pixel is only sensitive to
one of the RGB colors, thus creating a mosaic-like color pattern. The full resolution image is
computed with an algorithm called demosaicing, which recovers the image for each color, via
interpolation at the missing pixels.

Dichromatic
Reflection
Model

The dichromatic reflectance model predicts that scene reflectance can be modeled as a sum of
two terms: a specular and diffuse term. It also suggests that specular reflection is related to the
incident spectral illumination, while the spectrum of diffuse reflection is related to the medium
itself.

Diffraction Diffraction is a light bending phenomenon occurring when a light wave encounters an obstacle
or a slit. For example, when a light beam encounters a slit of dimensions comparable to the
light wavelength, the light bends around the slit edges creating a pattern given by a circular disk
with rings around it.

Diffuse
Interreflection

Diffuse interreflection is a process whereby light reflected from an object strikes other objects
in the surrounding area, illuminating them. Diffuse interreflection specifically describes light
reflected from objects which are not shiny or specular to reach areas not directly in view of a light
source. Based on the coloration of the surface, the reflected light incident on the surrounding
objects is also colored.

Direct
Illumination

It represents the illumination caused directly by a light source, and it is one of two components
of the scene illumination. The direct light component enhances the material properties of a
given point, and is in contrast to the global component, revealing the optical properties of the
scene.

Dual
Photography

Dual photography is a photographic technique that uses Helmholtz reciprocity to capture the
light field of all light paths from a structured illumination source to a camera. Image processing
software is then generally used to reconstruct the scene as it would have been seen from the
viewpoint of the projector.

Epipolar
Plane

In terms of stereo vision, the plane formed by the three-dimensional object (which is being
imaged) and the optical centers of the two cameras (that are imaging the object) is referred to
as the epipolar plane. The plane intersects each of the two camera’s image planes such that at
the intersection, epipolar lines are formed. It is important to know that all the epipolar lines and
epipolar planes intersect the epipole (the object) irrespective of where it is located with respect
to the two cameras.
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Focal Stack A focal stack denotes a set of images captured with the camera focused at different depths. This
gives a more comprehensive description of the light field, and allows computing extended depth
of field photographs, which allow focusing on multiple points in the image.

Fourier
Ptychography

Fourier ptychography is a method that increases the range of light field angles that can be
captured with a microscope by recording images illuminated from a range of different angles.
This leads to an increased image resolution and is much faster and simpler than moving the
specimen for each capture.

Fluorescence
Lifetime
Imaging

Fluorescence lifetime imaging is an imaging technique capturing the differences in the exponen-
tial decay rate of fluorescent chemicals in a sample. Knowledge of the sample’s fluorescence
lifetime allows applications such as DNA sequencing, tumor detection and high-resolution
microscopy.

Fresnel
Coefficients

Fresnel coefficients describe the proportion of light reflected and transmitted at the interface
between two different media. These coefficients are defined separately for two polarization
states: one orthogonal to the plane of incidence, and the other parallel. The total amount of
light reflected at the interface can be determined by decomposing the light into its constituent
polarization states and calculating the reflectance for each polarization state separately.

Global
Illumination

It represents the illumination caused by points in the scene different from the light source, and
it represents one of two components of the scene illumination. The global illumination reveals
the optical properties of the scene, indicating how a certain point is illuminated by other points
in the scene.

Gradient
Descent

It is defined as a first-order iterative optimization algorithm for finding a local minimum of a
differentiable function. Steps are taken which are proportional to the negative of the gradient of
the function at the current point in order to find a local minimum of a function using gradient
descent approach.

High Dynamic
Range
Imaging

This represents a method used to reproduce luminosity ranges much wider than possible with
standard imaging techniques. It involves algorithms that combine images capturedwith different
exposure values which contain details of the brighter or darker portions of the image.

Ideal Point
Source Light

It represents a source of light that is infinitesimal in size and radiates light outward uniformly in
all directions. The light rays therefore form a continuum and they are mapped one-to-one to an
imaginary sphere centered in the point source. This ensures that quantities such as the radiant
flux are transmitted equally across the sphere’s surface.

Irradiance The irradiance represents the radiant flux incident to an area on the imaginary sphere centered
in an ideal point source. The irradiance is directly proportional to the radiant flux, and inversely
proportional to the square of sphere.

Lambert’s
Law

Lambert’s cosine law describes the attenuation of light reflected off of a diffuse object. It states
that the reflected light is (approximately) isotropic, and the intensity reflecting off of the surface
is proportional to the product of the incoming light intensity and the cosine of the angle between
the surface normal and the incident light.

Lambertian
Surface

The Lambertian surface is a surface which diffuses the light uniformly when illuminated. It
represents an ideal "matte" surface, which means that the brightness is perceived the same
irrespective of the observer’s position.

Light Field Light field is a mathematical function of one or more variables whose range is a set of multidi-
mensional vectors that describes the amount of light flowing in every direction through every
point in space. The magnitude of each ray is given by the radiance and the space of all possible
light rays is given by the five-dimensional plenoptic function.

Light Ray A line describing the trace that a photon might leave behind, which is considered infinitesimal
in width and has an infinitesimal point of emergence. They are attenuated when passing through
objects, and the overall attenuation is the same if the direction of the light ray is reversed, known
as the reversibility property of light rays.
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Light Stage A light stage is a mechanical component used to illuminate an object from many directions. It
has important applications in graphics, as it can fully capture the reflectance field of an object.
It can be used to digitally relight an image and obtain the shape of an object with high accuracy.

Lock-in
Sensor
Imaging

A lock-in sensor is one of the most widely used sensor mechanisms in time-resolved imaging
which measure phase differences between emitted and received signals. This makes it partic-
ularly useful for time-of-flight, which measures the round trip time of an artificially generated
light signal.

Monochromatic Light (electromagnetic radiation) can be said to be monochromatic when the optical spectrum
contains only a single optical frequency. The associated electric field strength at a certain point
in space, generally exhibits a purely sinusoidal oscillation, having a constant instantaneous
frequency and a zero bandwidth. Light sources can also be called monochromatic if they emit
monochromatic light.

Non-line-of-
sight
imaging

A set of imaging techniques, usually active, aimed at recovering objects beyond the direct
line-of-sight.

Parallax Parallax which could be described as visual alternation is a displacement or difference in the
apparent position of an object viewed along two different lines of sight and is measured by
the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby
objects show a larger parallax than farther objects when observed from different positions, so
parallax can be used to determine distances of those objects from the viewer.

Parallax
Barriers

Parallax barriers denote a technology used in traditional 3D displays based on series of occluding
bars. This allows the spectator to see only one perspective of the object from each viewing
angle. This technology creates a trade-off between angular and spatial resolution, and was
replaced in newer 3D displays.

Pinhole
Camera

It is a camera without lenses containing only a tiny hole in one of its walls, the light gets
projected upside down on the opposite wall. It generally suffers from low light throughput,
since a good image contrast requires a small hole.

Plenoptic
Function

The plenoptic function is a high dimensional function which represents a detailed mathematical
model of the light field. In a general setting it has 7 variables for position, angle, wavelength
and time. However, it is common to use a 5 variable simplification that considers light to be
monochromatic and time-invariant.

Multilayer
Display

A multilayer display is a 3D display technique comprising of multiple levels of LCD screens
stacked in parallel and separated by predefined distances. Unlike parallax barriers, these displays
have a better light throughput, and a higher spatial resolution.

Radiance The radiance represents the ray strength, measuring the combined angular and spatial power
densities. Radiance can be used to indicate how much of the power emitted by the light source
that is reflected, transmitted or absorbed by a surface will be captured by a camera facing that
surface from a specified angle of view.

Radiant Flux The energy emitted, reflected, transmitted, or received, per unit time, and is measured in watts,
or joules/s. It characterises an ideal point source, and is transmitted equally across the surface
of an imaginary sphere centered in the point source.

Radiant
Intensity

The radiant intensity measures the angular power density, and is the radiant flux emitted per unit
solid angle. Therefore, a light beam has a higher radiant intensity if the power of the emitting
source is focused on a narrower solid angle.

Ray Model It represents a model of light that consists of single photon traces that don’t interact with
each other. This is in contrast to the wave model of light, which typically emerges in closed
environments such as a pinhole camera.
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Reflectance
Map

A reflectance map is a contour map in gradient space used to express the reflectance of a surface
under certain illumination. The reflectance is expressed with respect to the partial spatial
derivatives of the object. The shape of the object can be determined by mapping the reflectance
from multiple different maps to the respective point in gradient space.

Spatially
Coded
Imaging

Spatially coded imaging is a flexible alternative to the conventional imaging setup where spatial
imaging parameters such as the aperture, sensor and the illumination can be engineered to
enhance the quality of the imaging system.

Spectral
Unmixing

Spectral unmixing is an inverse problem that aims to express each pixel as a sum of certain
materials. The idea is that each pixel contains a small number of materials, and each material
has a distinct spectrum. If more than one material is in a pixel, the spectrum of each material
present will linearly superimpose when measured by the camera. The goal of spectral unmixing
is to recover these constituent spectras and their respective intensity in each pixel.

Spectrometry Spectrometry is defined as the field analysing the spectra of point sources. Most photographs
taken capture the light intensity distributed in space. Analysing the light in the frequency
domain can say a lot about the material properties.

Specular
Surface

A specular surface reflects the incoming light in a unique direction relative to the surface, and
is common with objects having a glossy or polished texture. This is in contrast to Lambertian
surfaces, which reflect light uniformly in all directions.

Stokes Vector The Stokes parametrization of electromagnetic radiation is a compact notation used to denote
its polarization state. It is a vector with four entries: (S0, S1, S2, S3). The first entry of Stokes
vector describes the intensity of the light, while the last three entries are used to indicate the
level of linear and circular polarization. A linear combination of linear and circular polarization
can be expressed as an elliptical polarization.

Strobe
Photography

It represents an imaging technique that uses light and sound to trigger the flash burst with precise
timing. This allows capturing fast phenomena, and can lead to stunning photographs such as
the famous "bullet through apple".

Subsurface
Scattering

Subsurface scattering is a mechanism of light transport in which light that penetrates the surface
of a translucent object is scattered by interacting with the material (reflected a number of times
at irregular angles inside the material) and exits the surface at a different point.

Superresolution
Imaging

Superresolution imaging is an approach to boost the resolution of a camera by transcending the
diffraction limit, or exceed the native resolution of the imaging sensors used.

Temporal
Coherence

Temporal coherence is the measure of the average correlation between the value of a wave
and itself delayed by some time, at any pair of times. Temporal coherence tells us how
monochromatic a source is. It basically characterizes how well a wave can interfere with itself
at different time instances.

Thin Lens The thin lens is an ideal model of a lens with a thickness that is negligible compared to the
radii of curvature of the lens surfaces. It is characterised by three parameters: the focal length,
aperture diameter and lens speed, and bends the light according to a simplified equation known
as the thin lens equation.

Time-of-Flight
Camera

A time-of-flight (ToF) camera is a range imaging camera system that employs time-of-flight
techniques to resolve distance between the camera and the subject for each point of the image,
by measuring the round trip time of an artificial light signal provided, generally by a laser.

Tone Mapping Tone mapping is a technique to create a mapping between two sets of colors, in order to produce
aesthetically pleasing images, enhance details, or generate a higher contrast photograph.
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specular, 313

angular dimension, 211
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azimuthal ambiguity, 260

azimuthal model mismatch, 260

backprojection, 187
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bidirectional reflectance distribution function
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perceptual, 291
retinal, 289

computer graphics, 334, 354
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data
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deconvolution, 62
3D deconvolution, 229

degree of polarization, 275
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multispectral, 306
denoising, 62
depolarization, 267
depth from defocus, 126, 127
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bucket detector, 153
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streak-tube, 170

dichromatic reflection model, 273, 325
diffraction, 11, 293
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digital micromirror device, 151, 155
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High Rank 3D, 237
Layered 3D, 237
liquid crystal, 234, 253



Computational Imaging (2022) • Edited version of this material will be published by the MIT Press

442 Index

tensor, 239
dual photography, 356, 365, 376

dual image, 356
primal image, 356
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coded exposure photography, 83
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filter

color filter array, 132, 295
Bayer filter, 135, 295
interference filter, 155
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multispectral filter array, 295
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flux, 5
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Fourier transform, 66
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global-direct separation, 130, 147, 173, 354,
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gradient field, 141
gradient descent, 218
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adaptive multiplexed, 365
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dark flash photography, 299
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flash/no-flash, 146
global, 360–362
multiplexed, 298, 332
passive, 297
structured light, 262

image plane, 229
image projection

orthographic, 319
perspective, 319

imaging
compound, 295
compressive, 150, 217
continuous wave, 176
depth, 172, 271
diffuse, 179
fluorescence lifetime, 173
multiplexed, 221
NLOS, 186, 289, 355, 375
Coherence based, 376
Intensity based, 375
time-of-flight, 375
skin, 354, 361
spatially coded, 121
spectral, 286
thermal, 288
time-of-flight, 163, 164, 220, 271, 354, 361
time-resolved, 167
transient, 376, 404
Wi-Fi, 288
X-ray, 289

intensity
radiant, 7

interferometry, 354, 372
Michelson, 373

interferometry:Michelson, 193
interpolation, 135

adaptive, 306
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iterative, 306
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interreflection
equation, 329
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learning

deep learning, 97, 218
machine learning, 94
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ocular, 229
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lenslet array, 229
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general, 359
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light slab parametrization, 207
light stage, 333
light transpor
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tinverse, 354, 356
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tsteady-state, 376

light transport, 173, 353
inverse, 359
matrix, 359
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metamer, 142, 290
micropolarimeter, 257
model inversion

seismic, 93
modeling

forward, 61, 328
inverse, 61, 328

Monte Carlo, 402
Mueller Matrix, 257
multiplexing

Fourier, 225
illumination, 148, 298, 332
light field, 233
spatial, 132, 225
time, 237

nearest neighbor, 92
neural network, 97

convolutional, 104
feedforward, 101
recurrent, 102

noise, 92
read, 92
shot, 92

Nyquist frequency, 71

optical computing, 366
optical manhole, 264
optical probing, 359, 365, 367

matrix, 366, 367
path isolation, 367
transport probing equation, 366, 367

orientation consistency, 330

parallax, 216
parallax barriers, 234

perceptron, 102, 218
photometric stereo

4-source color, 326
color, 325
example-based, 330

photometry, 314
pinhole, 122

camera, 9
pinspeck, 11

pixel, 74
Planck

Planck’s constant, 4, 285
Planck’s relation, 284

plane of incidence, 251
p-polarized, 251
s-polarized, 251

plenoptic function, 163, 283, 354
Poincaré sphere, 257
point spread function (PSF), 91, 122, 264
polarization, 249
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circular, 250
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linear, 249
unpolarized, 251

power density
angular, 6
spatial, 6

primal-dual coding, 367
dual domain, 367
primal domain, 367

principal component analysis, 303
prism, 293
probing function, 169
projection slice theorem, 90, 211

quantization, 72

radiance, 314, 357
radiometry, 314
Radon transform, 90
ray tracing, 329, 354
reflectance map, 318

Stokes reflectance field, 262
reflection, 285

diffuse, 185, 272
specular, 185, 216, 272

refraction, 12
refractive distortion, 260
regression, 96
regularization, 92, 100
relighting, 334
rotational symmetry, 315

scalar, 75
scanner

push-broom, 155, 294
whiskbroom camera, 155

scattering, 188, 263, 266, 285
coefficient, 182, 264
de-scattering, 354
mechanism, 263
media
fog, 267
haze, 266
turbid, 190
water, 264

Rayleigh, 267, 285
subsurface, 173, 272

semireflector, 276
Shannon’s sampling theorem, 69
shape

photometric stereo, 320
shape from color, 325
shape from intensity, 318
shape from interreflections, 326
shape from polarization, 260
shape from shading, 321

signal, 62
Dirac impulse, 64

singular value decomposition, 322
Snell’s Law, 12, 251
soft-thresholding, 89
solid angle, 6, 316

steradian, 7
source

extended, 324
point, 314

Space Time Impulse Response (STIR), 376
sparsity, 150
spatial dimension, 211
spectrometer

wedge imaging spectrometer, 155
spectrometry, 154
spectroscopy, 286
spectrum, 283

hyperspectral imaging, 287
multispectral imaging, 154, 287
spectral unmixing, 300

stereo transport matrix, 370
direct, 370
epipolar, 370
non-epipolar, 370

stereo vision, 265
Stokes vector, 256
super-resolution, 62, 143
superposition, 355
support vector machine, 96
system

impulse response, 64
linear, 63
linear time-invariant, 63

tomography, 90
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transmission, 285

vector, 75
visibility function, 329

wavelength, 4, 283
waveplate, 252

quarter-wave, 252
wiregrid polarizer, 253




